Table 2 Summery of the classifier performance evaluation utilizing the best feature subset, i.e.[‘ENT’, ‘MAX’, ‘CON’, ‘MEA’]. The best result in each column is underlined.
Classifier/score | \({{\varvec{A}}{\varvec{U}}{\varvec{C}}}_{0.632+}\) (%) | Accuracy (%) | AUC (%) | Specificity (%) | Sensitivity (%) | Precision (%) | F-Score (%) | Time (Sec) |
---|---|---|---|---|---|---|---|---|
SVM | 80.32 | 75.27 | 74.79 | 78.26 | 72.34 | 77.27 | 74.73 | 6.6 |
MLP | 79.76 | 73.12 | 74.12 | 73.91 | 72.34 | 73.91 | 73.12 | 2,231 |
RF | 84.15 | 80.65 | 80.23 | 84.78 | 76.60 | 83.72 | 80.00 | 139 |
Adaboost-SVM | 83.11 | 78.49 | 78.03 | 82.16 | 74.47 | 81.40 | 77.78 | 1,493 |
Adaboost-DT | 88.72 | 83.67 | 84.23 | 88.10 | 80.36 | 89.95 | 84.91 | 265 |
Hybrid | 84.29 | 79.57 | 79.83 | 84.78 | 74.47 | 83.33 | 78.65 | 471 |