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A retrospective analysis 
of the dynamic transmission routes 
of the COVID‑19 in mainland China
Xiandeng Jiang1, Le Chang2 & Yanlin Shi3*

The fourth outbreak of the Coronaviruses, known as the COVID-19, has occurred in Wuhan city of 
Hubei province in China in December 2019. We propose a time-varying sparse vector autoregressive 
(VAR) model to retrospectively analyze and visualize the dynamic transmission routes of this outbreak 
in mainland China over January 31–February 19, 2020. Our results demonstrate that the influential 
inter-location routes from Hubei have become unidentifiable since February 4, 2020, whereas the 
self-transmission in each provincial-level administrative region (location, hereafter) was accelerating 
over February 4–15, 2020. From February 16, 2020, all routes became less detectable, and no 
influential transmissions could be identified on February 18 and 19, 2020. Such evidence supports the 
effectiveness of government interventions, including the travel restrictions in Hubei. Implications 
of our results suggest that in addition to the origin of the outbreak, virus preventions are of crucial 
importance in locations with the largest migrant workers percentages (e.g., Jiangxi, Henan and Anhui) 
to controlling the spread of COVID-19.

Coronaviruses are single-stranded, enveloped and positive-sense RNA viruses, which are spherical in shape 
and have petal-like spines1. Firstly discovered and identified in 19652, coronaviruses have not caused large-scale 
outbreaks until the 2003 SARS epidemic in China, followed by 2012 MERS in Saudi Arabia and 2015 MERS 
in South Korea3. Although the exact origin remains debatable4, the fourth outbreak has taken place in Hubei 
province of China in December 2019 and rapidly spread out nationally5–10. On January 10, 2020, the World 
Health Organization (WHO) temporarily named the new coronavirus as the 2019 novel coronavirus (2019-
nCoV). Around one month later, the WHO officially renamed it to coronavirus disease 2019 or COVID-19 on 
11 February, 2020 (see https​://www.who.int/docs/defau​lt-sourc​e/coron​aviru​se/situa​tion-repor​ts/20200​211-sitre​
p-22-ncov.pdf?sfvrs​n=fb6d4​9b1_2 for details) and released a comprehensive interim guidance on dealing with 
this new virus for all countries11. On March 11, 2020, the WHO declared COVID-19 a global pandemic12. Since 
China reported its first cases to the WHO in December 2019, COVID-19 has been spreading rapidly around the 
world. As of June 15, 2020, about 7.9 million confirmed cases and 433 thousand deaths have been reported by 
authorities in 214 countries and territories13.

To combat against the rapid spread of the COVID-19, since mid-January 2020, the central government of 
China and all local governments have implemented intensive preventions. Examples include tracing close con-
tacts and quarantining infected cases, promoting social consensus on self-protection like wearing face mask in 
public area, among others14. With the unexpectedly rapidly growing number of confirmed cases, more extreme 
and unprecedented measures have taken places. On 23 January, 2020, the Chinese authorities introduced travel 
restrictions on five cities (Wuhan, Huanggang, Ezhou, Chibi and Zhijiang) of Hubei, shutting down the move-
ment of more than 40 million people15. Among existing research, most argues that those interventions have 
effectively halted the spread of the COVID-1915–25.

The feasibilities of aforementioned stringent measures adopted by the Chinese government have been widely 
discussed, and existing studies have preliminarily examined the effectiveness of these local containment meas-
ures (e.g., the lockdown of Wuhan26–28, airport screening and travel restrictions19,29–31, and isolation of cases 
and quarantine of contacts32,33). Moreover, different types of infection control measures are enforced in many 
other countries to prevent and constrain the spread of the COVID-19, and the effects of these measures have 
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been analyzed and compared over a rage of affected countries (e.g., Australia34,34, Germany35, Italy36,37 and 
South Korea38). Among those emerging large volume of studies, mathematical and statistical modeling plays a 
non-negligible role. Also, the classical susceptible exposed infectious recovered (SEIR) model with its various 
extensions is the most popular method39–52. SEIR family models are effective in exploring the epidemic charac-
teristics of the outbreak, forecasting the inflection point and ending time, and deciding the measures to curb the 
spreading. Despite this, they are less appropriate in identifying transmission routes of the COVID-19 outbreak, 
which is also not thoroughly investigated in existing literature.

In this paper, we fill in this gap and perform a retrospective analysis using the publicly available data53. Rather 
than employing the SEIR, we develop a time-varying coefficient sparse vector autoregressive (VAR) model. 
Using the least absolute shrinkage and selection operator (lasso)54,55 and the local constant kernel smoothing 
estimator56, our model is capable of estimating the dynamic high-dimensional Granger causality coefficient 
matrices. This enables the detection and visualization of time-varying inter-location and self-transmission routes 
of the COVID-19 on the daily basis. The resulting “road-map” can help policy-markers and public-health officers 
retrospectively evaluate both the effectiveness and unexpected outcomes of their interventions. Such an evalua-
tion is critical to winning the current battle against COVID-19 in China, providing useful experience for other 
countries facing the emerging threat of this new coronavirus, and saving lives when a new epidemic occurs in 
the future.

Methods
Model.  Throughout this study, we are interested in the growth rate yi,t such that:

where xi,t is the accumulated confirmed cases in the provincial-level administrative region (location, hereafter) 
i on day t ( i = 1, . . . ,N and t = 1, . . . ,T ). T and N define the number of days and number of locations under 
consideration, respectively. We then define yt = (y1,t , . . . , yN ,t)

′ , an N × 1 vector of the growth rate on day t. 
To investigate a dynamic direct transmission of the growth rate among locations, we propose a time-varying 
coefficient sparse VAR model, namely the tvSVAR model, which assumes that Granger causality coefficients are 
functions of time, such that:

where αt is an N-dimensional intercept vector at time t. Bt is an N × N Granger causality matrix at time t with 
a dynamic sparse structure, for which entries can be exactly zero and the locations of zeros can vary with time. 
ǫt is an N × 1 vector of error terms. The sparsity of Bt is assumed because N could be even larger than T in our 
case, which leads to very unstable estimations and problematic interpretations of Bt.

One important benefit of using the proposed tvSVAR to model the transmissions is that the Granger causality 
matrix, Bt , can provide both the direction and strength of the route on day t. For example, the ijth entry in Bt 
measures the strength of the transmission from location i to location j on day t. The ith diagonal of Bt represents 
the self-transmission in location i that captures the relationship between the growth rate in the current and 
previous days. More critically, the sparse structure eases the interpretation of Bt because many weak transmis-
sions may be of a random nature. The corresponding coefficients, therefore, can be treated as noises and are 
shrunk to zeros exactly. Moreover, a time-varying design of Bt allows us to investigate changes in the identified 
transmissions over time. For instance, let 11, 14 and 17 indicate Hubei, Jiangxi and Shanghai, respectively. On 
day t = 1 , the estimated β11,14,1 and β14,17,1 are 0.52 and 0.35, respectively. This suggests on that day, moderately 
strong transmission routes of confirmed COVID-19 cases are detected from Huber to Jiangxi and from Jiangxi 
to Shanghai, respectively. Further, estimated β17,i,1 for all i = 1, . . . , 20 are zeros, suggesting that the confirmed 
cases in Shanghai cannot spread to other locations on day 1. On day t = 2 , we observe estimated β11,14,1 = 0.61 , 
β14,17,1 = 0.41 and all β17,i,1 = 0 . Thus, the two detected routes from Huber to Jiangxi and Jiangxi to Shanghai 
have become more influential, whereas the cases in Shanghai are still yet to spread out on day 2. The above results 
cannot be derived using the classic epidemiological SEIR model.

To capture both dynamic and sparse structure of the Granger causality coefficients, we solve the following 
optimization problem:

where W s = diag
(
Kb1(τs − τ), . . . ,KbN (τs − τ)

)
 is the matrix of kernel weights calculated based on the band-

width bi , i = 1, . . . ,N , and Kbi (τs − τ) = K( τs−τ
bi

)/bi with τs defined as a scaled time s
T−1 . We use the Epanech-

nikov kernel K(x) = 0.75(1− x2)+ and a unified bandwidth for each i ( bi ≡ b ) to avoid a large number of tuning 
parameters. The coefficients βi,j,t denotes the ijth entry of the Granger causality matrix Bt , and � is the tuning 
parameter that aims to shrink insignificant βi,j,t to zero and thus controls the sparsity of Bt . Another essential 
feature of our proposed model is that the adaptive weights wi,j,t are employed to penalize βi,j,t differently in the 
lasso (L1) penalty54,55. The choice of weights wi,j,t takes account of the prior knowledge about the transmissions 
and can be specified by the users. In this study, we consider wi,j,t as the reciprocal of the accumulated confirmed 
in location i on day t − 1 . That is, the growth rate of a location with a smaller accumulated confirmed cases is 
less likely to influence the growth rates of others, and thus, more likely to be shrunk to zero. The final sparsity 
structure of Bt is still data-driven.

(1)yi,t+1 = ln(xi,t+1)− ln(xi,t),

(2)yt+1 = αt + Btyt + ǫt ,

(3)(�αt , �Bt) = argmin
αt ,Bt
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The estimators as in (3) can also be viewed as a penalized version of local constant kernel smoothing 
estimator56. We utilize a modified version of the fast iterative soft thresholding algorithm (FISTA)57 to solve the 
optimization problem (3).

Given a bandwidth b and a penalty parameter � , we can find the estimator (α̂t , B̂t) for each day t and observe 
the dynamic patterns of the transmission over time t for each pair of locations. The selection of b is critical to 
detecting the influential routes, which depends on the chosen criterion. Among the existing literature, a popu-
lar approach is to adopt the cross-validation strategy, such that based on the estimated (αt ,Bt) , the model will 
not ‘overfit’ yt . As for the time-series analysis, we use an expanding-window sample to implement the cross-
validation58. This requires that the chosen b will minimize the cross-validated forecast error, which is measured 
by the one-step-ahead root mean squared forecast error (RMSFE), such that

where [T0,T1] is the evaluation period, which is given by the last third of the data in our study, ŷ(b,�)i,t+1 denotes the 
one-step-ahead forecast for location i based on the data up to day t, and yi,t+1 defines the observed growth rate 
at day t + 1 for location i. Note that RMSFE is analogous to the square root of the popular least squared errors. 
An interpretation is that the chosen b will lead to the minimized total out-of-sample forecast errors of the growth 
rates of confirmed cases over the last third of the sample period.

Data and results
Data.  The data studied in this paper include confirmed COVID-19 cases which occurred in mainland China. 
The data are publicly available and sourced from the website of the National Health Commission of the People’s 
Republic of China53. The data-coverage ranges from January 29, 2020 to February 19, 2020, during which no 
missing data were recorded at location-level. The accumulated cases and the associated growth rates, grouped 
by the total national number, cases in Hubei and cases in all other locations, are plotted in Fig. 1a,b, respec-
tively. The total national (Hubei) accumulated confirmed cases increased rapidly from 7,736 (4,586) on January 
31, 2020 to 75,101 (62,457) on February 19, 2020. Note that on February 12, 2020, confirmed cases in Hubei 
included those confirmed by both laboratory and clinical diagnosis, leading to a one-time hump of the accu-
mulated number. Compared to those of Hubei, confirmed cases of other locations took up a smaller proportion 
of the total national number, ranging from 40.7% on January 29, 2020 to 16.8% on February 19, 2020. This sug-
gests that the growth rate of other locations should be lower than that of Hubei, which is consistent with Fig. 1b. 
Throughout our investigation period, except for the one-time hump on February 12, 2020, growth rates of Hubei 
and the rest steadily declined, from 33% and 25% to 5% and 1%, respectively.

Estimation results: transmission routes.  By taking the difference of the logged accumulated cases and 
applying one lag, our estimated transmission routes are available from January 31 to February 19, 2020 (two 
observations are lost). To avoid potential noises caused by small numbers, we only include data of locations, 
which had at least 150 accumulated confirmed cases as of February 19, 2020. Altogether, our modeled sample 
contains 20 location-level confirmed cases. We firstly test the stationarity of the 20 growth rates separately. Based 
on the Augmented Dickey–Fuller test, only the rates of three locations (Beijing, Hainan and Heilongjiang) are 
insignificant, which is in-line with the employed 10% significance level. The detailed results are available upon 
request. The model explained in “Methods” is then fitted incorporating all the 20 growth rates. A non-zero 
estimate of βi,j,t , the ijth entry of Bt in (2), indicates that on the tth day, the growth rate of location j is Granger 
caused by that of location i. In other words, there is a transmission route from location i to location j. Among 
the 20-day results, we noticed that the estimated transmission routes on days 1–5 changed considerably on 
daily basis. From the sixth day onwards, however, those estimated routes were more steady. Hence, we plot the 
estimates on days 1–5 and those on the every fifth day thereafter, on Fig. 2. Be noted that estimates smaller than 
0.2 (none-influential) are not presented a better visual illustration purpose. Also, this research focuses on the 
analysis of mainland China only, which excludes Taiwan, Macau, Hong Kong and all important islands of China’s 
territory, such as those located in the South China Sea. The plots presented in Fig. 2 therefore do not present a 
complete map of the territory of China, nor should they be used for purposes other than displaying identified 
transmission routes of COVID-19 in mainland China. The readers are directed to The National Administration 
of Surveying, Mapping and Geographic Information of the People’s Republic of China, should they need to 
precisely explore the scope of maps, national boundaries and the drawing of important islands of the Chinese 
territory.

In Fig. 2, we use color of light orange (small) to dark red (large) indicating the accumulated confirmed cases 
in each location, up to time t. Estimated transmission routes are colored in blue. Self-transmissions (indicated 
by βi,i,t ) are denoted by dots, and a larger size of dot suggests a larger estimated βi,i,t . Inter-location transmis-
sion (indicated by βi,j,t , where i  = j ) is represented by arrows, with the transparency indicating the magnitude 
of estimated βi,j,t . On the first day (January 31, 2020), there were influential inter-location transmissions from 
Hubei to Jiangxi, Heilongjiang, Zhejiang, Henan, Shandong, Jiangsu and Shaanxi, sorted by the magnitudes of 
strength (big to small). There were a few additional detected such transmissions on the second day, including 
those from Hubei to Guangxi, from Jiangxi to Fujian, and from Guangdong to Anhui, Yunnan and Hunan. 
The number of such identified inter-location routes, however, reduced rapidly over the next three days. On 
the fifth day (February 4, 2020), no influential transmission routes were found from Hubei to directly affect 
other locations, and there were only three influential routes identified nationally, including Zhejiang–Shaanxi, 

(4)RMSFE(b, �) =
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Zhejiang–Jiangxi and Jiangxi–Shanghai. The number of those detected inter-location routes declined again in 
the next few days, and on day 13, only Henan–Heilongjiang was found influential. On days 19 and 20 (February 
18 and 19, 2020), there were no influential inter-location transmissions identified. The above findings suggest 
that the number of influential inter-location transmissions overall dropped quickly in the first five days and then 
reduced steadily for the rest 15 days. This is consistent with the observations of Fig. 3a, where the time-varying 
estimates of the Granger causality of Hubei on other locations are plotted. On each day, we report the mean, 
standard deviation (Std. Dev.), the 25% quantile ( Q1 ) and 75% quantile ( Q3 ) of those estimates in Table 1, which 
also leads to consistent findings.
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Figure 1.   Accumulated confirmed cases and growth rate: 31/1/2020–19/2/2020.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:14015  | https://doi.org/10.1038/s41598-020-71023-9

www.nature.com/scientificreports/

As for the self-transmission, we firstly examine (Fig. 2b). It can bee seen that there were quite a few detected 
influential self-transmissions on the first two days. However, this number dropped quickly over days 3–5, and 
only self-transmissions of Heilongjiang, Guangdong and Zhejiang were found influential on day 5. Since then, 
the number of influential self-transmissions increased quickly with growing magnitudes (influence). On the 
sixteenth day (February 15, 2020), 16 out of the 20 examined locations had an estimated βi,i,20 of at least 0.2. 
Those large self-transmissions, however, disappeared rapidly again in the next 3 days. On February 18 and 19, 
2020, there were no influential self-transmissions identified. This is consistent with our findings on Fig. 3b, where 
time-varying estimated βi,i,t are plotted for each location. We report daily descriptive statistics of those estimates 
in Table 1, which also results in consistent conclusions.

Discussions
Since 23 January, 2020, many cities on mainland China started to introduce travel restrictions, including five 
cities (Wuhan, Huanggang, Ezhou, Chibi and Zhijiang) of Hubei15. According to WHO’s situation report59, the 
average incubation period of COVID-19 is up to 10 days. Thus, our estimated dynamic transmission routes sup-
ports the significant effectiveness of the interventions taken by the Chinese authorities15–25. This is evidenced by 
Fig. 2a–e, where the number of influential inter-location transmissions from Hubei to other locations reduced 
very quickly. Compared to multiple influential routes originating in Hubei detected on the first two days (January 
31 and February 1, 2020), by February 4, 2020 (around 10 days after the travel restrictions), there were already 
no such transmissions identified. On the other hand, from February 5 to 16, 2020, Table 1 suggests that the 
averaged magnitudes of self-transmission on each day were strengthening steadily. This may also be explained 
by the interventions, which have effectively blocked inter-location transmissions, such that the growth rate of 
each location could only be caused by its internal transmissions.

We now focus on the inter-location transmission routes. Since influential routes from Hubei were no longer 
detected since day 5, we calculate the average βi,j,t of the 19 locations affected by Hubei over the first four days 
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Figure 2.   Estimated routes of transmission among locations of China: 31/1/2020–19/2/2020. Note: This figure 
is created in software R version 3.6.3 (https​://www.r-proje​ct.org) using packages ‘ggplot2’ and ‘ggmap.’

https://www.r-project.org
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(January 31–February 3, 2020). The top five destinations are presented in Panel A of Table 2. Apart from its 
geographic neighbors Jiangxi and Henan, Hubei has lead to influential routes to Heilongjiang, Zhejiang and 
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Figure 3.   Estimated time-varying coefficients: 31/1/2020–19/2/2020.
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Shandong directly. This may be explained by the substantial floating population working and living in Hubei 
from those locations. Excluding routes originating in Hubei, the Panel B of Table 2 suggests that the top destina-
tions of transmission routes have not changed much over the first four days and the rest 16 days. Despite minor 
differences in ranking, Shaanxi, Heilongjiang, Jiangxi, Anhui, Henan and Jiangsu appear to be the destinations 
suffered most from inter-location transmissions from origins other than Hubei. Similarly, the top five sources 
(excluding Hubei) of those transmissions are basically identical over the days 1–4 and days 5–20, as shown in 
Panel C of Table 2. This is consistent with the fact that travel restrictions in Hubei should not affect the connec-
tions among other locations. In all cases, Jiangxi, Henan, Guangdong, Zhejiang and Anhui are the most influential 
origins other than Hubei.

It is worth noting that Jiangxi, Henan and Anhui belong to both the top origins and destinations of the inter-
location transmissions, excluding Hubei. Since the impact of Hubei is not considered, this cannot be explained 
by the two influential transmission routes of Hubei–Jiangxi and Hubei–Henan listed in Panel A of Table 2. To see 
this, over days 5–20, the transmissions out of Hubei are no longer significant and thus should not affect routes 
from Jiangxi and Henan to another location. In contrast, one explanation is the large migrant workers from 
Jiangxi, Henan and Anhui to other locations (excluding Hubei). According to the Report on China’s migrant 
population development of 201760, Jiangxi (7.25%), Henan (6.30%) and Anhui (6.27%) are among the top five 
locations in mainland China, ranked by the percentages of migrant workers in 2017.

Table 1.   Summary of daily estimated transmission routes.

Day

From Hubei to others Self-transmissions

Mean Std. Dev. Q1 Q3 Mean Std. Dev. Q1 Q3

1 0.1602 0.1366 0.0802 0.2306 0.1430 0.1651 0.0154 0.2451

2 0.1906 0.1593 0.1019 0.2770 0.1684 0.2081 0.0160 0.2847

3 0.1405 0.0961 0.0825 0.1961 0.1273 0.1508 0.0357 0.1864

4 0.1469 0.0924 0.0781 0.1938 0.1119 0.1143 0.0487 0.1837

5 0.0467 0.0548 0.0042 0.0662 0.1124 0.1008 0.0437 0.1706

6 0.0483 0.0539 0.0071 0.0695 0.1177 0.0967 0.0881 0.1687

7 0.0496 0.0509 0.0130 0.0725 0.1242 0.0982 0.0969 0.1751

8 0.0518 0.0507 0.0236 0.0766 0.1328 0.1013 0.1103 0.1873

9 0.0523 0.0514 0.0179 0.0788 0.1417 0.1064 0.1165 0.1933

10 0.0516 0.0515 0.0086 0.0794 0.1528 0.1147 0.1276 0.2152

11 0.0507 0.0508 0.0066 0.0770 0.1546 0.1129 0.1311 0.2172

12 0.0490 0.0490 0.0035 0.0698 0.1844 0.0807 0.1280 0.2304

13 0.0543 0.0457 0.0231 0.0756 0.2164 0.0936 0.1557 0.2950

14 0.0518 0.0442 0.0162 0.0697 0.2465 0.0946 0.1623 0.3387

15 0.0468 0.0444 0.0110 0.0636 0.2789 0.1245 0.1742 0.3763

16 0.0388 0.0439 − 0.0010 0.0556 0.3646 0.1614 0.2151 0.4746

17 0.0447 0.0408 0.0053 0.0600 0.3297 0.1477 0.2241 0.4420

18 0.0431 0.0360 0.0123 0.0646 0.1919 0.0997 0.1294 0.2467

19 0.0032 0.0017 0.0022 0.0041 0.0021 0.0016 0.0012 0.0027

20 0.0028 0.0016 0.0017 0.0036 0.0016 0.0015 0.0009 0.0018

Table 2.   Top five locations of the inter-location transmissions.

Days High–low

Panel A: top destinations (affected by Hubei)

1–4 Jiangxi Heilongjiang Zhejiang Henan Shandong

Panel B: top destinations (affected by locations excluding Hubei)

All Shaanxi Heilongjiang Jiangxi Anhui Henan

1–4 Shaanxi Jiangxi Heilongjiang Henan Jiangsu

5–20 Heilongjiang Shaanxi Jiangxi Anhui Henan

Panel C: top origins (excluding Hubei)

All Jiangxi Henan Guangdong Zhejiang Anhui

1–4 Jiangxi Guangdong Zhejiang Henan Anhui

5–20 Henan Jiangxi Guangdong Anhui Zhejiang
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Conclusions
Coronaviruses have lead to three major outbreaks ever since the SARS occurred in 2003. Although the exact 
origin is still debatable, the current shock, namely COVID-19, has taken place in Wuhan, the capital city of 
Hubei province in mainland China. As the fourth large-scale outbreak of coronaviruses, COVID-19 is spreading 
quickly to all provincial-level administrative regions (locations, hereafter) in China and has recently become a 
world-wide epidemic. As a significant complement to existing research, this study employs a tvSVAR model and 
retrospectively investigates and visualizes the transmission routes in mainland China.

Demonstrated in Fig. 2, our baseline results review both the dynamic inter-location and self-transmission 
routes. Since February 4, 2020, the spread out of Hubei was largely reduced, leading to no identifiable routes to 
other locations. Simultaneously, the self-transmissions started to accelerate and peaked on around February 15, 
2020 for most locations. Given an average incubation period of 10 days, those results support the argued effec-
tiveness of the travel restrictions to control the spread of COVID-19, which took place in multiple cities of Hubei 
on January 23, 2020. On February 18–19, 2020, there existed no influential inter-location or self-transmission 
routes. Thus, the growth rates of confirmed cases are of a more random nature in all locations thereafter, implying 
that the spread of COVID-19 has been under control. For the detected inter-location transmissions, our findings 
demonstrate that Jiangxi, Heilongjiang, Zhejiang, Henan and Shandong are the top 5 locations affected mostly 
via routes directly from Hubei. When the influence of Hubei is excluded, Jiangxi, Henan and Anhui are among 
both the top origins and destinations of transmission routes.

Our results have major practical implications for public health decision- and policy-makers. For one thing, the 
implemented timely ad-hoc public health interventions are proven effective, including contact tracing, quarantine 
and travel restrictions. For another, apart from the origin of the virus, as locations with largest migrant workers 
percentages, virus preventions are also of crucial importance in Jiangxi, Henan and Anhui to controlling the 
epidemics like the outbreak of COVID-19 in the future. With limited resources, taking ad-hoc interventions in 
such locations may most effectively help stop the spread of a new virus, from an economic perspective.

Code availability
The R code that supports the findings of this study is available from the author on request.
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