Table 1 For a single type of the superposed four-photon decoherence-free states, the operations (circular-polarization flippers (CFs), \(\left| R \right\rangle\)- and \(\left| L \right\rangle\)-phase flippers (RPs and LPs), phase flippers (PPs), and a path switch] by Feed-Forward in parts (1), (2), (3), (4), and (5) should be applied to the output state of the fourth gate, due to the measurement results of the QDs. Here, we assign “O” and “N” to mean “Operation” and “No operation” of the Feed-Forward.

From: Encoding scheme using quantum dots for single logical qubit information onto four-photon decoherence-free states

Results of QDs (1, 2, 3, 4)

Operations dependent on results (photon-path)

Result state:\(\left| {\psi_{8} } \right\rangle_{{{\text{ABCD}}}}\)

(1)

(2)

(3)

(4)

(5)

\(\left| { +_{{\text{e}}} } \right\rangle_{1} \left| { +_{{\text{e}}} } \right\rangle_{2} \left| { +_{{\text{e}}} } \right\rangle_{3}\)

\(\left| { +_{{\text{e}}} } \right\rangle_{4}\)

N

N

N

(D-1)

O

\(\frac{1}{2}\left| {0_{{\text{ PL}}} } \right\rangle_{{{\text{ABCD}}}}^{1112} + \frac{\sqrt 3 }{2}\left| {1_{{\text{ PL}}} } \right\rangle_{{{\text{ABCD}}}}^{1111}\)

\(\left| { -_{{\text{e}}} } \right\rangle_{1} \left| { +_{{\text{e}}} } \right\rangle_{2} \left| { +_{{\text{e}}} } \right\rangle_{3}\)

N

N

N

(D-2)

N

\(\left| { +_{{\text{e}}} } \right\rangle_{1} \left| { -_{{\text{e}}} } \right\rangle_{2} \left| { -_{{\text{e}}} } \right\rangle_{3}\)

(A),(B)

(A),(B)

N

(D-1)

O

\(\left| { -_{{\text{e}}} } \right\rangle_{1} \left| { -_{{\text{e}}} } \right\rangle_{2} \left| { -_{{\text{e}}} } \right\rangle_{3}\)

(A),(B)

(A),(B)

N

(D-2)

N

\(\left| { +_{{\text{e}}} } \right\rangle_{1} \left| { -_{{\text{e}}} } \right\rangle_{2} \left| { +_{{\text{e}}} } \right\rangle_{3}\)

(A)

N

(A)

(D-1)

O

\(\left| { -_{{\text{e}}} } \right\rangle_{1} \left| { -_{{\text{e}}} } \right\rangle_{2} \left| { +_{{\text{e}}} } \right\rangle_{3}\)

(A)

N

(A)

(D-2)

N

\(\left| { +_{{\text{e}}} } \right\rangle_{1} \left| { +_{{\text{e}}} } \right\rangle_{2} \left| { -_{{\text{e}}} } \right\rangle_{3}\)

(B)

N

(B)

(D-1)

O

\(\left| { -_{{\text{e}}} } \right\rangle_{1} \left| { +_{{\text{e}}} } \right\rangle_{2} \left| { -_{{\text{e}}} } \right\rangle_{3}\)

(B)

N

(B)

(D-2)

N

\(\left| { +_{{\text{e}}} } \right\rangle_{1} \left| { +_{{\text{e}}} } \right\rangle_{2} \left| { +_{{\text{e}}} } \right\rangle_{3}\)

\(\left| { -_{{\text{e}}} } \right\rangle_{4}\)

N

(C)

N

(D-2)

N

\(\frac{1}{2}\left| {0_{{\text{ PL}}} } \right\rangle_{{{\text{ABCD}}}}^{1122} + \frac{\sqrt 3 }{2}\left| {1_{{\text{ PL}}} } \right\rangle_{{{\text{ABCD}}}}^{1121}\)

\(\left| { -_{{\text{e}}} } \right\rangle_{1} \left| { +_{{\text{e}}} } \right\rangle_{2} \left| { +_{{\text{e}}} } \right\rangle_{3}\)

N

(C)

N

(D-1)

O

\(\left| { +_{{\text{e}}} } \right\rangle_{1} \left| { -_{{\text{e}}} } \right\rangle_{2} \left| { -_{{\text{e}}} } \right\rangle_{3}\)

(A),(B)

(A),(B),(C)

N

(D-2)

N

\(\left| { -_{{\text{e}}} } \right\rangle_{1} \left| { -_{{\text{e}}} } \right\rangle_{2} \left| { -_{{\text{e}}} } \right\rangle_{3}\)

(A),(B)

(A),(B),(C)

N

(D-1)

O

\(\left| { +_{{\text{e}}} } \right\rangle_{1} \left| { -_{{\text{e}}} } \right\rangle_{2} \left| { +_{{\text{e}}} } \right\rangle_{3}\)

(A)

(C)

(A)

(D-2)

N

\(\left| { -_{{\text{e}}} } \right\rangle_{1} \left| { -_{{\text{e}}} } \right\rangle_{2} \left| { +_{{\text{e}}} } \right\rangle_{3}\)

(A)

(C)

(A)

(D-1)

O

\(\left| { +_{{\text{e}}} } \right\rangle_{1} \left| { +_{{\text{e}}} } \right\rangle_{2} \left| { -_{{\text{e}}} } \right\rangle_{3}\)

(B)

(C)

(B)

(D-2)

N

\(\left| { -_{{\text{e}}} } \right\rangle_{1} \left| { +_{{\text{e}}} } \right\rangle_{2} \left| { -_{{\text{e}}} } \right\rangle_{3}\)

(B)

(C)

(B)

(D-1)

O