Table 2 Prediction models from the logistic regression and the ROC analysis results of the combined (a) and individual metabolites (b).

From: Urine metabolomics based prediction model approach for radiation exposure

 

Prediction models

AUC

SEa

95% CIb

Youden index (J)

Sensitivity

Specificity

(a)

P1

p = [1/1 + e{−9.026 + 4.319 * taurine}]

0.989

0.0084

0.916–1.00

0.891

96.3

92.86

P2

p = [1/1 + e{−4.161 + 3.697 * taurine−0.894 * citrate}]

0.995

0.0058

0.925–1.00

0.963

96.3

100.00

P3

p = [1/1 + e{−5.057 + 6.006 * taurine-0.500 * citrate-5.335 * α keto glutarate}]

0.997

0.0032

0.930–1.00

0.963

96.3

100.00

P4

p = [1/1 + e{−0.498 + 13.771 * taurine-3.412 * citrate-34.461 * α keto glutarate + 515.183 * fumarate}]

0.999

0.0018

0.933–1.00

0.964

100.00

96.4

(b)

 

Metabolites

AUC

SEa

95% CIb

Youden index (J)

Sensitivity

Specificity

1

Citrate

0.966

0.033

0.878–0.996

0.927

96.3

96.43

2

Taurine

0.989

0.0084

0.916–1.00

0.891

96.3

92.86

3

Fumarate

0.976

0.0192

0.893–0.999

0.927

96.3

96.43

4

α-Ketoglutarate

0.955

0.0298

0.862–0.993

0.892

100.00

89.29

5

Creatine

0.954

0.0238

0.861–0.992

0.777

77.8

100.00

6

Succinate

0.954

0.0256

0.861–0.992

0.817

88.89

92.86

  1. aStandard error.
  2. bConfidence interval.