Table 5 Ranking of the 10 most important variables for algorithms run for predicting incident AF (among 27 clinical variables).

From: Long-term PM2.5 exposure and the clinical application of machine learning for predicting incident atrial fibrillation

Ranking of variables

Traditional regression analysis

Support vector machines with linear Kernel

Decision tree

Random forest

Extreme gradient boosting

1

Heart failure

Heart failure

Age

Serum eGFR

Heart failure

2

Systolic blood pressure

Systolic blood pressure

Serum eGFR

Systolic blood pressure

Systolic blood pressure

3

Age

Age

Heart failure

Age

Age

4

Previous ischemic stroke/TIA

Previous ischemic stroke/TIA

Systolic blood pressure

Heart failure

PM2.5

5

PM2.5

PM2.5

Previous ischemic stroke/TIA

PM2.5

Serum triglyceride

6

Serum eGFR

Serum eGFR

PM2.5

Sex

Serum total cholesterol

7

Serum triglyceride

Previous MI

Serum triglyceride

BMI

Serum HDL cholesterol

8

Sex

Sex

Sex

Smoking history

BMI

9

Smoking history

Smoking history

Smoking history

Fasting blood glucose

Serum eGFR

10

Serum total cholesterol

BMI

BMI

Previous ischemic stroke/TIA

Serum LDL cholesterol

  1. AF atrial fibrillation, BMI body mass index, CI confidence interval, eGFR estimated glomerular filtration rate (mL/min), HDL high density lipoprotein, HR hazard ratio, LDL low density lipoprotein, MI myocardial infarction, PM2.5 particulate matter < 2.5 μm in diameter, TIA transient ischemic attack.