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Deep neural network based 
artificial intelligence assisted 
diagnosis of bone scintigraphy 
for cancer bone metastasis
Zhen Zhao1,3, Yong Pi2,3, Lisha Jiang1, Yongzhao Xiang1, Jianan Wei2, Pei Yang1, 
Wenjie Zhang1, Xiao Zhong1, Ke Zhou1, Yuhao Li1, Lin Li1, Zhang Yi2* & Huawei Cai1*

Bone scintigraphy (BS) is one of the most frequently utilized diagnostic techniques in detecting 
cancer bone metastasis, and it occupies an enormous workload for nuclear medicine physicians. So, 
we aimed to architecture an automatic image interpreting system to assist physicians for diagnosis. 
We developed an artificial intelligence (AI) model based on a deep neural network with 12,222 cases 
of 99mTc-MDP bone scintigraphy and evaluated its diagnostic performance of bone metastasis. This 
AI model demonstrated considerable diagnostic performance, the areas under the curve (AUC) of 
receiver operating characteristic (ROC) was 0.988 for breast cancer, 0.955 for prostate cancer, 0.957 
for lung cancer, and 0.971 for other cancers. Applying this AI model to a new dataset of 400 BS cases, 
it represented comparable performance to that of human physicians individually classifying bone 
metastasis. Further AI-consulted interpretation also improved human diagnostic sensitivity and 
accuracy. In total, this AI model performed a valuable benefit for nuclear medicine physicians in timely 
and accurate evaluation of cancer bone metastasis.

Advanced malignant carcinomas, such as breast cancer, prostate cancer, and lung cancer, frequently develop into 
bone metastasis. Thus the early detection of bone metastasis holds a valuable benefit for choosing the treatment 
strategy to obtain a better overall survival period and improved life quality of patients1,2. Bone scintigraphy (BS) 
with 99mTc-MDP is one of the most commonly utilized diagnostic techniques to identify bone metastasis in cancer 
patients since it has merit for whole-body detection and high sensitivity3. The latest national survey has reported 
that more than 1.15 million bone scans were annually performed in China, which occupies a great workload for 
nuclear physicians. However, the limited resolution of BS images makes the interpretation is time-consuming and 
experience-dependent work and has the disadvantages of subjectivity, error distinctive, and unsatisfied efficiency.

Recently, the development of artificial intelligence (AI) is creeping into every facet in modern life by its 
advances in big-data retrieval and explicit feature evaluation, which is ideal for medical image analysis4–6. With 
the help of deep neural networks (DNNs), the computational methods allow an algorithm to program itself by 
learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules 
explicitly7,8. Compared to traditional image processing methods, deep learning is more reliable and efficient, 
since it could automatically extract image features instead of hand-crafted features9,10. By now, the AI with deep 
neural networks have achieved great success in the applications of medical image analysis11, such as contour-
ing of nasopharyngeal carcinoma volumes12, retinopathy of prematurity screening13 and diagnosing of breast 
ultrasonography images14. Considering these advances, the application of DNNs-based AI system in analysis of 
nuclear BS image is worth pursuing.

In this study, we constructed an AI model based on a DNN with 12,222 cases of 99mTc-MDP bone scintigraphy 
images from patients with definite clinical conclusions. Then, the diagnostic performance and the consulting 
potential of AI model for improving human diagnostic accuracy and efficiency were evaluated.
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Methods
Collection, inclusion, and exclusion of patients.  This study with retrospective information collection 
was approved by the Institutional Ethics Committee of West China Hospital in Sichuan University. We col-
lected 13,477 cases of BS images from patients suspected to have bone metastasis and underwent whole-body BS 
between January 1st, 2016, and June 30th, 2018. Then, cases with improper injection, improper imaging process, 
the patients who had definite primary bone tumor, and the ones did not undergo follow-up examinations were 
excluded.

Scanning process and diagnostic criteria of cases.  Whole-body anterior and posterior views were 
performed using two gamma cameras (GE Discovery NM/CT 670 and Philips Precedence 16 SPECT/CT). 
The patient received 555 to 740 MBq of technetium-99 m methylene diphosphonate (99mTc-MDP; purchased 
from Syncor Pharmaceutical Co., Ltd, Chengdu, China) by intravenous injection, and the images were obtained 
approximately 3 h post injection. The gamma cameras were equipped with low-energy, high-resolution, parallel-
hole collimators. The scan speed was 16–20 cm/min, and the matrix size was 256 × 1024. The energy peak was 
centered at 140 keV with 15% to 20% windows.

Each BS examination contained two images of anterior and posterior views with resolutions of 256 × 1024. All 
images collected for data set were DICOM format and interpreted for the presence or absence of bone metastasis 
via consensus by two nuclear medicine physicians with more than 10 years of experience. The follow-up scans 
were used to observe whether hot spots had disappeared, remained unchanged, or decreased or increased in size 
and intensity. The final clinical assessment of bone metastasis was patient-based analysis, it would be determined 
by clinical assessments which based on the follow-up bone scans and the other radiographic images (Such as 
SPECT/CT, MRI, and CT et al.)15. When no clinical or radiographic signs was found in image, data would be 
considered Grade 0 with no probability of bone metastasis. If the visible hot spots have confirmed fractures or 
degenerative changes in gathered clinical records, or the spots disappeared, remained unchanged, or decreased 
in size and intensity on the follow-up scan and the other radiographic images indicates these lesions leaned 
away from malignancy and toward the low probability of bone metastasis as Grade 1. However, cases in Grade 2 
represents visible hot spots, with localization, distribution, and intensity not typical of degenerative changes or 
fractures, not substantially changed in scintigraphic follow-up and the radiographic modalities are equivocal, 
but the overall clinical judgement indicates probable bone metastasis. Grade 3 images had typical scintigraphic 
or radiographic patterns for bone metastasis and the patient’s medical record states bone metastasis. Thus, Grade 
2 and Grade 3 were identified as bone metastasis.

Cohorts and network architecture for AI model.  To obtain an accurate testing results, 12,222 images 
were randomly assigned to three cohorts: (a) a training cohort of 9776 patients for DNNs construction, (b) a 
validation cohort of 1223 patients for optimization of the DNNs hyperparameters, and (c) a testing cohort of 
1223 patients to test the performance of the model. As shown in Table 1, the images used in our study contained 
6021 cases with lung cancer, 1844 cases with prostate cancer, 2100 cases with breast cancer, and 2257 cases with 
other cancers (37 kinds of cancers were listed in Supplementary Table S1).

Then, we proposed a multi-input convolutional neural network (CNN) which can accept multiple images as 
input. The original images (DICOM format) were resized to 256 × 768 and Hu matrix were normalized to [0, 1] 
before going to the model. Previous studies indicate that fine-tuning with pre-trained networks is an effective 
method for training CNNs16,17. In this study, several ImageNet pretrained networks are explored and ResNet-50 
has been chosen to extract high-level features from input images. Fully connection layer was removed from the 
final layer of ImageNet pretrained network ResNet-50 for feature extraction. The proposed network contains three 
parts. In the first part, ResNet-50 network was employed to extract high-level features. In the second part, max 
aggregation operator was used to aggregate high-level features extracted from two images. Since hotspots in the 
images usually present variant scales. Inspired by spatial pyramid pooling, three pooling layers with different ker-
nel size were used to capture different scale information. In the final part, two fully connected layers were applied 
to classify the features into metastasis or non-metastasis. The detailed network architecture is shown in Fig. 1.

Evaluation of AI performance.  Performance of the automated AI model was evaluated by the ROC analy-
sis and AUC measurement using the testing cohort containing another 1223 cases. Total cases were divided 
as 4 subgroups by cancer types: prostate cancer (15.13%), breast cancer (17.17%), lung cancer (49.22%), and 
other cancers (18.48%), while the sensitivity, specificity, accuracy, PPV, and NPV in each cancer were calculated 
respectively. Gender and age related diagnostic performance was conducted to investigate whether these fac-
tors would affect the results by comparing the AUC values of male versus female, and patient’s age < 60 years 
versus ≥ 60 years in these patients.

Then, an individual interpreting competition between AI and three nuclear physicians who had more than 
5 years’ experience was carried out. A new dataset containing 200 cases with cancer bone metastasis and 200 
without metastasis were randomly chosen from 2786 examinations with confirmed conclusion between July 
and October 2018 in West China Hospital. In this competition, AI and physicians were blinded to the ground 
truth and distribution of patients, and interpreted images without extra radiologic and medical information, 
but only based on BS images. To further estimate the potential value of AI model, one hundred days later, these 
three physicians were required to re-interpreting the same test cohort of 400 cases, and they would give the final 
judgement after consulting AI’s result. The time–cost, diagnostic sensitivity, specificity, accuracy, PPV, and NPV 
of AI system and physicians were evaluated, respectively.
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Statistical analysis.  In this study, the comparisons of accuracy, sensitivity, specificity, PPV, and NPV 
between each cancer type were evaluated using the Chi-square test. All analyses were performed by using sta-
tistical software SPSS 21.0 (SPSS Inc, Chicago, IL, USA). Statistical significance was considered at the value of 
P < 0.05.

Ethics approval and consent to participate.  This retrospective study was performed in accordance 
with the Declaration of Helsinki declaration and its later amendments or comparable ethical standards. The 
ethical permission for the retrospective study was obtained at the Biomedical Research Ethics Committee of 
West China Hospital of Sichuan University (Approval No. 2019–317), and the requirement to obtain informed 
consent was waived.

Results
Patient characteristics.  The flow diagram of case inclusion in this study is shown in Supplementary 
Table S2. At the beginning, we collected 13,477 images from individual patients who were suspected to have 
bone metastasis and underwent whole-body BS. Then, 796 patients who had primary bone tumor were excluded, 
147 cases were excluded because of poor image quality, and 312 patients were excluded for they did not undergo 

Table 1.   The distribution of training, validation, and testing cohorts for AI modeling.

Characteristic Lung cancer Prostate cancer Breast cancer Other cancers Total

Training cohort

Number 4817 1474 1680 1805 9776

Sex

 Male 2699 1474 10 1238 5421

 Female 2118 0 1670 567 4355

Age

 Mean + SD 58.5 + 10.8 71.0 + 8.7 51.4 + 10.4 56.1 + 12.9 58.7 + 12.3

 < 60 years 2400 137 1296 1054 4887

 ≥ 60 years 2417 1337 384 751 4889

Skeletal lesions

 No metastasis 2697 756 1066 1138 5657

 Metastasis 2120 718 614 667 4119

 Metastasis rates 44.01% 48.71% 36.55% 36.95% 42.13%

Validating cohort

Number 602 185 210 226 1223

Sex

 Male 336 185 0 147 667

 Female 266 0 210 79 556

Age

 Mean + SD 58.6 + 10.5 71.5 + 8.4 50.3 + 10.3 57.0 + 12.4 58.8 + 12.2

 < 60 years 304 15 175 122 616

 ≥ 60 years 298 170 35 104 607

Skeletal lesions

 No metastasis 337 95 133 142 707

 Metastasis 265 90 77 84 516

 Metastasis rates 44.02% 48.65% 36.67% 37.17% 42.19%

Testing cohort

Number 602 185 210 226 1223

Sex

 Male 357 185 0 150 692

 Female 245 0 210 76 531

Age

 Mean + SD 58.5 + 10.9 71.0 + 8.1 51.5 + 10.0 56.3 + 13.4 58.8 + 12.3

 < 60 years 303 14 163 139 619

 ≥ 60 years 299 171 47 87 604

Skeletal lesions

 No metastasis 337 95 133 142 707

 Metastasis 265 90 77 84 516

 Metastasis rates 44.02% 48.65% 36.67% 37.17% 42.19%
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follow-up examinations. Finally, 12,222 patients (median age, 58.7 ± 12.3 years; male, 6781; female, 5441) were 
collected and stratified sampling for dataset, including 9776 cases for training, 1223 cases for validating, and 
another 1223 cases for testing.

Performance of the AI model.  After training and validating process, our AI model indicated considerable 
diagnostic accuracy of 93.38% in cancer bone metastasis in total of 1223 testing cases, which is better than other 
models in previous reports (Table 2).

As shown in Fig. 2, in subgroups divided by cancer types, our AI model displayed considerable high accuracy 
measured by AUC value, which was 0.955 for prostate cancer, 0.988 for breast cancer, 0.957 for lung cancer, 
and 0.971 for the other cancers. The age-based analysis indicated no significant diagnostic differences of bone 
metastasis in patients with breast cancer, lung cancer, and other cancers. However, statistically different diagnostic 
accuracy was investigated in patients between ≥ 60 years old (AUC = 0.938) and < 60 years old (AUC = 0.992) in 
prostate cancer group (P < 0.05). A probable reason might be the older ages of patients (71.0 ± 8.1 years) than 
other groups (P < 0.01), thus the increased risk of benign diseases in aging patients, such as osteophyte, arthrosis, 
osteoporotic fracture, and postoperative change, also displayed hot spots in BS and thus decreased the diagnostic 
accuracy of bone metastases. In addition, except for sexuality-related breast cancer and prostate cancer, there 
were no significant differences in the diagnosis of bone metastasis between male and female patients in lung 
cancer and other cancer groups.

There are still 81 misdiagnosed cases were found in the testing cohort of 1223 cases (6.62%), including 38 
false-negative (3.11%) and 43 false-positive (3.51%) cases (Supplementary Table S3). Lesion number, size, and 
adjacent diffused signal were the major influence factors in false-negative cases. On the other hand, fracture, 
inflammation, degenerative, and postoperative change were the main reasons for the false-positive cases in our 
test.

Figure 1.   The architecture of convolutional neural network for AI model.
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Human vs. AI.  The comparison of diagnostic performance of AI and human physicians were shown in 
Fig. 3. In the interpreting competition between AI model and three qualified nuclear medicine physicians, AI 
model cost only 11.3 s to complete the interpretation of 400 cases, while three physicians spent 116, 140, and 
153 min, respectively, to accomplish the same work, which is corresponding to a time savings of 99.88%. Then, 
compared with the highest performance of three physicians, AI model manifested improved accuracy (93.5% vs. 
89.00%) and sensitivity (93.5% vs. 85.00%) in calculating metastases in total cases (P < 0.001), but the specific-
ity between AI model (93.50%) and human (94.50%) were not significantly different. However, after consulting 
the AI result, physician-1 and physician-3 indicated improved diagnostic performance, especially in finding the 
missed lesions and reducing the false-negative rate.

In detailed error analysis, we collected 13 cases with correct interpretation by AI but misdiagnosed by all three 
physicians. Among these cases, 11 patients were found to have small lesions (diameter for a few millimeters) 
or insufficient resolution of radioactive uptake, were ignored or judged as benign by humans (Supplementary 
Fig. S1). The other 2 patients who had osteoporotic vertebral compression fracture were misdiagnosed as metas-
tases by humans (Supplementary Fig. S2). Interestingly, there were 6 cases misdiagnosed by AI but correctly 
interpreted by all three physicians. One patient with diffuse skeletal metastasis and two patients with humerus 
metastases were misdiagnosed as benign by AI (Supplementary Fig. S3). Then, one patient with multiple fractures 
and one patient with postoperative bone change, were misdiagnosed as malignant lesions by AI model (Sup-
plementary Fig. S4); while the last misdiagnosed case was caused by the catheter on the patient.

Discussion
Despite the advent of various imaging modalities, such as PET/CT and multiparameter MRI, have been developed 
to detect skeletal metastasis, bone scintigraphies with 99mTc-MDP remains one of the most effective diagnostic 
techniques for its considerable sensitivity and cost performance21,22. Skeletal imaging occupies 61.3% of 2.09 
million of SPECT scans annually in China, and most of them were not fused with CT by the limited device 
utilization23. Thus, the diagnosis of BS planar image is still a challenge for the nuclear medicine physicians in 
China. Fortunately, an automated system might be an effective tool to overcome this dilemma. In this study, we 
constructed an AI model with deep neural network based on 12,222 cases to extract image features, and evalu-
ated its efficiency for diagnosing cancer bone metastasis with BS images. This model simultaneously improved 
diagnostic performance and time–cost for interpreting images, and the AI consulting system could potentially 

Table 2.   Comparison of diagnostic performance for cancer bone metastasis by our and previous AI models. 
EB  EXINIbone18, BN1 BONENAVI version 119, BN2 BONENAVI version 220.

EB BN1 BN2 Ours

Country Swedish Japan Japan China

Training cohort 795 904 1532 9776

Bone metastases 33% 16% 42% 42%

Age 66 ± 12 64 ± 12 64 ± 12 58 ± 12

Gender

 Male 514 457 790 5421

 Female 281 447 742 4355

Cancer types

 Prostate 431 267 451 1474

 Breast 217 383 624 1680

 Lung / / / 4817

 Others 147 254 457 1805

Validating cohort NM NM NM 1223

Testing cohort 384 257 503 1223

Performance measured by AUC​

AUC of cancer types

Prostate 0.939 0.949 0.957 0.955

Breast 0.847 0.91 0.924 0.988

Lung – – – 0.957

Other 0.77 0.861 0.914 0.971

Total 0.858 0.91 0.932 0.964

AUC of gender

Male 0.877 0.912 0.934 0.963

Female 0.831 0.91 0.932 0.966

AUC of age

 < 60 years – – – 0.979

≥ 60 years – – – 0.949
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Figure 2.   Diagnostic performance of AI model in BS interpretation assessed by ROC analysis for cancer types, 
age (B) and gender (C) factors. (A) Breast cancer; (B) prostate cancer; (C) lung cancer; (D) other cancers; E&F. 
Summary of total cases. AI artificial intelligence, ROC receiver operating characteristic, AUC​ area under the 
curve, PPV positive predictive value, NPV negative predictive value.
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improve physicians’ diagnostic skills specially for younger physicians who lacked experience. Besides, by the first 
time, lung cancer was separated as an individual subgroup for AI analysis and indicated diagnostic accuracy of 
93.36%, which seems promising for clinical use in the future study.

Generally, deep neural networks with sufficient valid dataset is usually conducive for improving the final 
outcomes for AI analysis24. In this study, a dataset contained 12,222 BS examinations from 40 cancer types, 
which is the largest dataset for single-center BS image interpreting by now, was used to construct the DNN 
for AI modeling. Compared with traditional methods using hand-crafted features, the use of multi-input deep 
convolutional neural network allows AI model to follow the natural distribution, reduced subjective judgment of 
physicians, better generalization performance, and closer to the usual clinical environment. For example, previ-
ous studies15,25 usually excluded cases that could be misleading during the training process, such as patients with 
large bladder, sternotomy, or fracture. However, there were not any atypical cases were excluded in our dataset to 
help the AI model come closest to a real index. Thus, as expected, our AI model represented improved diagnostic 
accuracy of AUC values (0.964) compared with other BS diagnostic AI models in previous reports (0.858, 0.91, 
and 0.932)18–20. Notably, although the AI model have made false-negative of 8 cases in navigating small lesions 
in testing cohort, it displayed better capability in small lesion recognition than humans in following competition.

Although the AI model was able to efficiently improve the detection of missed small metastatic lesions by 
human and beneficial to reduce the readers’ error rates of BS interpretation, there are several limitations should be 
noted. First, the estimations by our AI model were based on BS images only. The false-negative and false-positive 
cases have still appeared, which may be due to small lesion number, lesion size, lesion adjacent to physiological 
uptakes like bladder, and diffused skeletal metastasis manifested by diffused homogenous uptakes. These kinds 
of cases were also tricky for nuclear medicine physicians to interpret based on BS images only. However, in 
“real” clinical works, the patients’ medical records, such as injury history, surgical record, characteristics of other 

Figure 3.   Diagnostic performance of individual diagnosis by three human physicians and human-AI consulted 
interpretation of 400 cases.
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imaging modalities, and the results of laboratory tests, must be considered to obtain accurate BS interpretation. 
According to this, the construction of a new AI model based on the fused SPECT/CT bone images is currently 
undergoing by our team, and we hope the addition of fused reference CT and medical records would effectively 
reduce the diagnostic errors. Secondly, the unsatisfied capability in recognizing add-ons on patients, such as a 
catheter, is still a noticeable disadvantage of this AI model but easy for physicians. Thirdly, our study just focused 
on the performance of the AI model on the diagnosis of absence or presence of bone metastasis to assist nuclear 
medicine physicians’ interpretation. However, a series previous study demonstrated that the bone scan index 
(BSI) calculated by artificial neural networks is an effective biomarker for predicting the prognosis or survival 
of some malignant cancers26–29. Whether our AI model could be beneficial to the assessment of the prognosis or 
survival of some malignant cancers like BSI, it might require more concentration on lesion-based analysis. Last 
but not least, the retrospectively acquired database was collected from only one hospital for the present work. The 
patients at our hospital might not be considered typical of other centers, and the findings might be considered 
to be relatively institution-specific. A prospective multi-center study will also be needed to evaluate whether the 
AI model would be able to show satisfactory performance on BS images acquired with different gamma cameras, 
protocols, interpretive styles, and incidence of metastatic disease. These processes require considerable time for 
collecting more clinical data and will be studied in future works.

Conclusions
Our AI model achieved considerable time-efficiency, accuracy, specificity and sensitivity in diagnosis of bone 
metastasis in patients with lung cancer, prostate cancer, breast cancer, and other cancers. With further assess-
ment and validation, this model could facilitate diagnosing programs and help physicians improve the diagnostic 
efficiency and accuracy of bone metastasis, particularly in remote or low-resource areas, leading to a beneficial 
clinical impact.

Data availability
Data confirming the results of this study are presented in the manuscript and are available from the correspond-
ing author upon reasonable request.
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