Table 1 Features extraction from deep models and comparison of internal validation results with external test result.

From: Multimodal deep learning models for early detection of Alzheimer’s disease stage

 

Models

Biomarkers extracted

Internal cross validation performance

External test performance

EHR (deep models)

(CN, MCI, AD)

Regularization coefficients (0.03, 0.03)

Dropouts (0.6, 0.6, 0.6)

Layer sizes (200, 100, 75)

Memory summary score

RAVLT memory test (learning)

RAVLT memory test (learning) baseline

Neurophysiological battery (AVTOT 6 trials)

Metabolomics marker (pe.P.16.0 22.6)

Accuracy: 0.78 ± 0.03

Precision: 0.78 ± 0.04

Recall: 0.78 ± 0.05

F1 Scores: 0.77 ± 0.04

Accuracy: 0.76

Precision: 0.76

Recall: 0.77

F1 Scores: 0.76

Imaging (deep models)

Prediction (CN, AD)

Highest on validation (Dropout-0.5, Batch size 5 , Layer size(20), # areas = 5)

Highest on external test (SVM kernel = linear)

Left hippocampus

Right hippocampus

Right superior temporal

Right amygdala

Left amygdala

Accuracy: 0.86 ± 0.04

Precision: 0.86 ± 0.04

Recall: 0.87 ± 0.04

F1 Scores: 0.86 ± 0.04

Accuracy: 0.84

Precision: 0.83

Recall: 0.83

F1 Scores: 0.83

SNP (deep models)

Prediction (CN, MCI/AD)

Regularization coefficients (0.03, 0.03), Dropouts (0.6, 0.6, 0.6)

Layer sizes (200, 100, 50)

Gene1 location 207782707

Gene1 location 55342929

Gene10 location 106979076

Gene10 location 50858045

Gene11 location 121493001

Accuracy: 0.89 ± 0.03

Precision: 0.9 ± 0.04

Recall: 0.84 ± 0.03

F1 Scores: 0.86 ± 0.04

Accuracy: 0.66

Precision: 0.66

Recall: 0.57

F1 Scores: 0.53

EHR + SNP + Imaging (deep models)

Prediction (CN, MCI, AD)

Regularization coefficients (0.03, 0.03)

Dropouts (0.6, 0.6, 0.6)

Layer sizes (200, 100, 50)

Random Forest Trees = 31

Voxel based morphometry Angular left

Biomarker (PtdCho 16:0/18:1)

MR volumes posterior limb of internal capsule including cerebral peduncle right

Biomarker (PC ae C40:5)

Biomarker (PC ae C42:4)

Accuracy: 0.79 ± 0

Precision: 0.79 ± 0.07

Recall: 0.79 ± 0.07

F1 Scores: 0.79 ± 0.07

Accuracy: 0.78

Precision: 0.77

Recall: 0.78

F1 Scores: 0.78

EHR + SNP (deep models)

Prediction (CN, MCI, AD)

Regularization coefficients (0.03, 0.03)

Dropouts (0.6, 0.6, 0.6)

Layer sizes (200, 100, 50)

Random Forest Trees = 31

Biomarker (Asymmetric dimethylarginine)

Neuropsychological Battery (AVERR total intrusions)

Neuropsychological Battery (Auditory Verbal Learning Test Trial1)

Memory Score

Voxel based morphometry Amygdala left

Accuracy: 0.78 ± 0

Precision: 0.79 ± 0.07

Recall: 0.79 ± 0.09

F1 Scores: 0.79 ± 0.07

Accuracy: 0.78

Precision: 0.78

Recall: 0.79

F1 Scores: 0.78

EHR + Imaging (deep models)

Prediction (CN, MCI, AD)

Regularization coefficients (0.03, 0.03)

Dropouts (0.6, 0.6, 0.6)

Layer sizes (200, 100, 50)

Random Forest Trees = 31;

Biomarker (Asymmetric dimethylarginine)

Neuropsychological Battery (AVERR total intrusions)

Cortical Thickness Average of Right Pericalcarine

Memory Score

Voxel based morphometry Amygdala left

Accuracy: 0.79 ± 0

Precision: 0.79 ± 0.08

Recall: 0.79 ± 0.08

F1 Scores: 0.79 ± 0.07

Accuracy: 0.77

Precision: 0.76

Recall: 0.77

F1 Scores: 0.77

SNP + Imaging (shallow models)

Prediction (CN, MCI/AD)

Random Forest Trees = 20

Mean GLCM 3 right superior temporal

Sum GLCM 5 left amygdala

Median GLCM 2 right hippocampus

Gene10 location 108777098

Entropy intensity left hippocampus

Accuracy: 0.75 ± 0.11

Precision: 0.72 ± 0.16

Recall: 0.65 ± 0.09

F1 Scores: 0.65 ± 0.12

Accuracy: 0.63

Precision: 0.62

Recall: 0.57

F1 Scores: 0.56

  1. Autoencoder models are preferred for EHR and SNP data and CNN for imaging data. For multi-modality models, the three modality models and two modality models (EHR + SNP, EHR + imaging gave the best prediction performance). For the multi-modality models, 3 or 4 combinations deep models outperformed shallow models.