Table 2 Topological properties of the networks used in experiments.

From: Path-based extensions of local link prediction methods for complex networks

Datasets

\(\left| V\right| \)

\(\left| E\right| \)

C

\(\langle k\rangle \)

\(\langle d\rangle \)

\(\rho \)

H

Karate37

34

78

0.588

4.588

1.204

0.139

7.769

US Roads6

49

107

0.507

4.367

2.082

0.091

4.935

Dolphin38

62

159

0.303

5.129

1.678

0.084

6.805

Train Bombing39

64

243

0.711

7.594

1.345

0.121

12.597

Neurons40

279

2287

0.337

16.394

1.218

0.059

25.916

E. coli41

329

456

0.222

2.772

2.421

0.008

12.314

Netscience42

379

914

0.798

4.823

3.021

0.013

8.021

Infectious43

410

17298

0.467

84.38

1.815

0.206

2.992

Metabolic44

453

4596

0.782

20.291

1.332

0.045

17.903

US Air45

500

2980

0.726

11.92

1.496

0.024

53.785

Email46

1133

5451

0.254

9.622

1.803

0.009

18.688

Yeast47

2375

11693

0.388

9.847

2.548

0.004

34.223

  1. |V| and |E| are the number of nodes and links respectively. C is the clustering coefficient. \(\langle k \rangle \) and \(\langle d \rangle \) are average degree and average path length. Finally \(\rho \) denotes the density of the network while H is the heterogeneity defined as \(H = \frac{\langle k^2 \rangle }{\langle k \rangle ^2}.\)