Table 1 Results of second-order polynomial curve fit for experimental results in Fig. 4d based on the constant acceleration model \(z(t) = \frac{1}{2}a t^2 + v_{0} t + z_{0}\).

From: In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic

Droplet #

\(a\) (m s−2)

\(v_{0}\) (m s−1)

1

− 9.654 ± 0.201

− 0.522 ± 0.011

2

− 9.804 ± 0.174

− 0.469 ± 0.010

3

− 9.637 ± 0.185

− 0.508 ± 0.010

4

− 9.805 ± 0.202

− 0.482 ± 0.011

5

− 9.422 ± 0.217

− 0.504 ± 0.011

6

− 9.707 ± 0.195

− 0.498 ± 0.011

7

− 9.754 ± 0.159

− 0.495 ± 0.009

  1. Results are given with 95% confident interval bounds. \(z_{0} = 0.026\) in all cases.