Table 1 Average inter-valley scattering rates \(\langle \frac{1}{\tau _I} \rangle\) for anisotropic impurities potentials.

From: Topologically distinct Weyl fermion pairs

Impurity potential

Model A

Model B

\(U^{+-}_{q,q'}\)

\((+,+,+)\rightarrow (-,+,+)\)

\((+,+,+)\rightarrow (-,-,-)\)

\(u_I \frac{(q_x-q'_x)}{k_F}\)

\(\langle \frac{1}{\tau _I} \rangle = \frac{2\pi }{\hslash } N_{\text {F}} \frac{8}{9} u_I^2\)

\(\langle \frac{1}{\tau _I} \rangle = \frac{2\pi }{\hslash } N_{\text {F}} \frac{8}{9} u_I^2\)

\(u_I \frac{(q_{\parallel }-q'_{\parallel })}{k_F}\)

\(\langle \frac{1}{\tau _I} \rangle = \frac{2\pi }{\hslash } N_{\text {F}} \frac{4}{9} u_I^2\)

\(\langle \frac{1}{\tau _I} \rangle = \frac{2\pi }{\hslash } N_{\text {F}} \frac{8}{9} u_I^2\)

  1. Here p-wave (\(p_x\), \(p_y\), and \(p_z\)) impurities potentials are considered. The \(p_x\)-impurity potential (second row) does not differentiate the two models, but the form of \(\sim p_\parallel =p_y\) or \(p_z\) can tell the difference (last row). \(N_F\) is the density of states at the Fermi energy and \(u_{I}\) characterizes the strength of the impurity potential.