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Environmental sound classification 
using temporal‑frequency 
attention based convolutional 
neural network
Wenjie Mu1, Bo Yin1,2*, Xianqing Huang2, Jiali Xu2 & Zehua Du1

Environmental sound classification is one of the important issues in the audio recognition field. 
Compared with structured sounds such as speech and music, the time–frequency structure of 
environmental sounds is more complicated. In order to learn time and frequency features from 
Log-Mel spectrogram more effectively, a temporal-frequency attention based convolutional neural 
network model (TFCNN) is proposed in this paper. Firstly, an experiment that is used as motivation in 
proposed method is designed to verify the effect of a specific frequency band in the spectrogram on 
model classification. Secondly, two new attention mechanisms, temporal attention mechanism and 
frequency attention mechanism, are proposed. These mechanisms can focus on key frequency bands 
and semantic related time frames on the spectrogram to reduce the influence of background noise 
and irrelevant frequency bands. Then, a feature information complementarity is formed by combining 
these mechanisms to more accurately capture the critical time–frequency features. In such a way, the 
representation ability of the network model can be greatly improved. Finally, experiments on two 
public data sets, UrbanSound 8 K and ESC-50, demonstrate the effectiveness of the proposed method.

In recent years, the research on environmental sound classification (ESC), which is dedicated mainly to identify 
specific sound events, such as identifying dog barking, gunshots, and air conditioning sounds, has received 
increasing attention. The study result has been used in many practical applications, including robotic hearing1, 
smart home2, audio monitoring system3 soundscape assessment4 and so on. Compared with regular and struc-
tured sounds such as speech and music, the environmental sound has neither static time patterns like melodies 
or rhythms nor semantic sequences like phonemes. Hence, it is difficult to find universal features that can 
represent various temporal patterns. Besides, the environmental sound contains a lot of noise and some sounds 
unrelated to the sound event, which lead to complicated composition structure with variability, diversity, and 
unstructured characteristics.

To deal with the above problems, various signal processing methods and machine learning techniques have 
been used for ESC tasks. In traditional ESC methods5–7, appropriate feature representation and efficient classifi-
cation model are usually regarded as two separate problems. Most of the methods are first to make appropriate 
feature representations through manual operation, including the Mel frequency cepstral coefficient (MFCC)8, 
Mel spectrum feature9, and wavelet transforms10. Then, machine learning algorithms such as support vector 
machines (SVM)11, K-nearest neighbors (KNN)12, matrix factorization13 and extreme learning machines14 are 
used to deal with the generated features. Although these methods improve recognition performance to a certain 
extent, they also have obvious shortcomings. It takes a lot of time to construct feature representations through 
manual operation, and to find the best combination of functions, a lot of experiments are often required, the 
process is very cumbersome. However, with the development of deep learning theory, deep neural networks have 
been proven to have a strong ability to automatically extract features, making more deep network models15–18 
used to solve the ESC problem. In particular, the convolution neural network (CNN) has been proved to have 
a strong ability to capture time–frequency features19,20, which can perfectly solve the limitations of traditional 
methods, so it is considered very suitable for solving ESC tasks.

Recently, research based on attention mechanism has also been applied to related fields of audio recogni-
tion, including speech recognition20 and speech sentiment analysis22. In the field of ESC, there have also been 
documents that have proposed a classification model based on the attention mechanism23–25. By using neural 
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network to predict the importance of each time step and assigned corresponding weights to each time step based 
on the prediction results, achieved better performance on some public datasets. However, as the spectrogram is 
a two-dimensional signal representation of time and frequency, its features in the time–frequency domain have 
different nature and importance. Although the audio signal conversion in time domain does not have much effect 
on model classification, the difference between across frequency bands in the frequency domain will greatly affect 
the classification performance. The above studies only used the attention mechanism to focus on feature vectors 
at different time steps, but ignored the importance of features in different frequency bands.

Hence, an experiment is designed to analyze the frequency band characteristics to obtain more insights 
about the influence of different frequency bands on the model classification. After that, a new frequency atten-
tion mechanism is then proposed to pay different degrees of attention to each frequency band, so as to focus 
on learning the feature representation with distinguishing information. Finally, by combining with other tem-
poral attention mechanisms, a novel temporal-frequency attention based convolutional neural network model 
(TFCNN) is proposed. The model has strong representation ability, and can more effectively capture the critical 
time–frequency features in sound events. Experiments on the UrbanSound8K and ESC-50 dataset show that the 
accuracy of the proposed classification model is 93.1% and 84.4%, respectively, which fully proves the advanced 
nature of the proposed method.

The rest of this paper is set up as follows. Section 2 discusses and reviews previous related work. Section 3 
analyzes the frequency band characteristics through experiments, and use as the motivation for the proposed 
frequency attention mechanism. Section 4 introduces our proposed classification model architecture and atten-
tion mechanism. Section 5 reports and analyzes the experimental results. Section 6 summarizes the full text.

Related work
ESC networks.  This sub-section focuses on the development of deep learning theory utilized in the ESC 
field. Piczak19 first applied the CNN model to solve the ESC problem, and utilized Log-Mel and its deltas spectro-
gram as a two-dimensional feature representation to input into the network for learning and classification. Com-
pared with the previous traditional methods, the performance has been significantly improved. The modeling 
capabilities of deep neural networks often require a huge amount of data as support. To solve the problem of the 
scarcity of labeled environmental sound data, Salamon26 proposed several data augmentation strategies. Time 
stretching, adding background noise, pitch shift, and other means to form new training samples. Compared with 
the method proposed by Piczak19, its accuracy is improved by 6%. Dai27 et al. used utilized the original audio 
waveform as input to train CNN, and conducted a large number of experimental comparisons with the number 
of CNN layers as the independent variable, the results show that when the number of CNN layers reaches 18 
layers, its performance can compete with 2D-CNN using two-dimensional spectrogram as feature input. In28, 
Abdoli et al. proposed an end-to-end classification model based on 1D-CNN, which can directly extract features 
from raw audio waveforms of any length. They initialized the first layer of the 1D-CNN model as a Gammatone 
filter bank to simulate the response mechanism of human hearing, which can achieve an accuracy of up to 89%, 
which is the best performance of the current 1D-CNN model.

Attention mechanism.  The attention mechanism was first proposed in the field of image recognition29, 
mainly used to improve the effect of Encoder and Decoder based on RNN model. In recent years, with the 
deepening of deep learning research, by combining the attention mechanism with the deep neural network, 
the importance metric is calculated through the neural network and automatically assigned the corresponding 
weight for each frame-level feature, breakthroughs have been made in the fields of speech recognition21 and 
machine translation30.

To further improve the classification performance of the model, the research based on the attention mecha-
nism has also been carried out in the field of ESC. Guo23 et al. first proposed an temporal attention mechanism 
and extended it to the CLDNN model. The mechanism can evaluate each time step in an attempt to find the 
most critical time step in the sequence and assign it a higher weight score. Li24 et al. proposed a multi-stream 
network model based on temporal attention. The attention weight is calculated by the degree of energy change 
in the spectrogram. In25, Zhang et al. considered that not all frame-level features can contribute equally to the 
performance of environmental sound. Except for time frames related to semantic features, others such as silent 
frames, noise frames, etc. both will reduce the robustness of the classification model and lead to classification 
errors. Based on this assumption, a frame-level temporal attention mechanism is proposed and extended it to the 
RNN model to capture the most important time frame part of the sound sequence. Although the above methods 
improve the classification performance to some extent, the impact of different frequency bands on classification 
is ignored. Therefore, this paper proposes a frequency attention mechanism that can give different degrees of 
attention to each frequency band. Combined with temporal attention mechanism, the environmental sound 
spectrogram with complex time–frequency structures could be well processed.

Analysis of frequency band characteristics
To clarify the response of each frequency band on the spectrogram and the impact on the model classification, 
we designed the following experiment. We first resample the original audio samples at 22050 Hz, use a Ham-
ming window with a size of 1024, and a hop length of 512 to perform a short-time Fourier transform (STFT) 
on the down-sampled data to extract the amplitude spectrogram. Then, the amplitude spectrogram is passed 
through 128-Mel filter bank of bands and converted to a logarithmic scale to obtain a Log-Mel spectrogram. 
After normalizing the Log-Mel spectrogram, connect all samples of the same type on the UrbanSound8k dataset 
are connected in time dimension, and take the average value in the time direction to obtain 10 frequency activa-
tion matrices X of size (128, 1), as shown in Fig. 1. It can be observed that the activation values of different Mel 
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frequency bands in each category have obvious changes, and the active frequency bands with higher activation 
value between different categories are also not exactly. For example, the active band of the “car horn” is relatively 
scattered and lacks continuity, while the active band of the “siren” is mainly concentrated in the middle and low 
frequency regions. For the category of “drilling”, there is a higher activation in almost all the frequency bands.

In order to analyze how the frequency bands with different activation values affect the classification, we 
design a method to mask the specific frequency bands (Algorithm 1). The masking effect of this method is shown 
in Fig. 2. Given the Log-Mel spectrogram X of a sample and the frequency activation matrix A of the sample 

Figure 1.   Frequency activation matrix for different sound categories.
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category, one or more continuous segments of length l active or inactive frequency bands can be masked. We 
assume that the activation value on the activation matrix A of a sample is greater than λ, then the frequency 
band corresponding to the position is considered to be an active frequency bands, otherwise it is regarded as an 
inactive frequency band. MN is the number of masks.

As can be seen from Fig. 1, since the active frequency bands of different types of sound events are basically 
different, this is not only reflected in the length and position, but also in the number. Corresponding to the three 
elements of position, length, and quantity, respectively, are the three parameters λ, l, and MN in algorithm 1, so 
they need to be set according to the specific conditions of each class. Refer to the parameters shown in Table 1, 
we perform active frequency band masking and inactive frequency band masking for each audio sample in 
the UrbanSound8k dataset, and construct two datasets according to the different masking strategies–-masking 
the active frequency band dataset and mask the inactive frequency band dataset. The experimental results are 
shown in Table 2. As expected, the classification accuracy of the model trained with the masked active fre-
quency band dataset is only 78.3%, which is significantly lower than that of the original dataset for almost all 
categories. In contrast, the classification accuracy of the model trained with the masked inactive frequency band 
data set dropped by 3.4%, but it can still maintain most of the performance. Although the artificial definition 
of active frequency band will inevitably lead to some deviation, but through the above experiments, it can still 
be explained that those active frequency bands with high activation values will be more important than other 

Figure 2.   Mask the two active frequency bands of length 2 in the Log-Mel Spectrogram.
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frequency bands and contain key distinguishing information that can be used to represent the main activity of 
the sound event. Moreover, because the essence of the attention mechanism tends to focus on key information 
that is distinguishable and ignores irrelevant information, this also provides a feasible basis for the frequency 
attention mechanism we propose next.

Proposed method
In order to better learn the discriminatory time–frequency features from the audio spectrogram, a temporal-fre-
quency attention baesd convolutional neural network (TFCNN) is proposed in this paper. The overall architecture 
of the model is shown in Fig. 3, which mainly consists of two parts: generating the attention part and backbone 
network part. In the part of generating the attention mechanism, by applying the two attention mechanisms 
developed to the Log-Mel spectrogram extracted from the original audio data, different degrees of attention can 
be given to the frequency band and time frame parts, so that the calculations used to representation learning can 
be concentrated in specific areas. The backbone network part consists of a convolutional layer, a pooling layer 
and a fully connected layer, which is responsible for extracting time–frequency features from the spectrogram 
processed by attention mechanism and predicting sound events. Besides, in the final testing stage, a probabilistic 
voting strategy is adopted to summarize the prediction results of multiple audio clips to make judgments, which 
can effectively avoid classification errors caused by some extreme values.

Feature processing.  In the field of audio recognition, the Log-Mel spectrogram is generally regarded as 
one of the most powerful features due to the consideration of the human auditory mechanism, the two-dimen-
sional feature map generated by the log-Mel feature along each frame of the audio sequence contains time and 
frequency features respectively in time domain and frequency domain. Therefore, this paper focuses on using 
Log-Mel spectrogram as a basic feature to learn the time–frequency representation of environmental sound 
events, and use CNN in a similar way to image recognition to accurately classify it.

The original audio data format should first be unified and then converted into mono form using average 
double channel mode. Next, a Hamming window with a size of 46 ms (1024frams, sampling rate 22050 Hz) and 
overlap of 50\% is used to perform a short-time Fourier transform (STFT) on the data to extract the amplitude 
spectrogram. After that, the amplitude spectrogram is passed through 128-Mel filter bank of bands and converted 
to a logarithmic scale to obtain a Log-Mel spectrogram. In the previous literature25,26,37–41, the segmentation 
length is usually set to 41, 44 and 128. However, these values are not suitable for the attention mechanism to learn 
the importance weight and remain the number of training samples here. Therefore, the Log-Mel spectrogram is 
split into 64 frames with 50% overlap, and use the zero-padding method to complete the sub-segments with the 
length less than 64 frames. Finally, the Log-Mel feature of each sub-segment can be expressed as a feature vector 
of size 128 × 64 × 1 (corresponding to frequency × time × channel).

Harmonic‑percussive source separation.  In previous studies, the purpose of the Harmonic-Percussive 
Source Separation (HPSS) algorithm was used to separate harmonic and percussive from the mixed music, 
which was mainly used in the field of music signal processing. Compared with this kind of regularity and struc-

Table 1.   Masking parameters for different categories.

AC CH CP DB DR EI GS JA SI SM

Λ 0.1 0.2 0.2 0.3 0.4 0.1 0.2 0.2 0.3 0.4

MN 1 2 1 2 1 1 1 1 2 1

L 16 15/4 18 18/6 30 15 20 16 20/8 18

Table 2.   Classification accuracy after training with different datasets.

Class No mask Mask I Mask A

AC 91.5% 90.0% 77.2%

CH 90.9% 88.3% 82.8%

CP 86.3% 82.1% 75.5%

DB 88.0% 85.2% 76.6%

DR 90.1% 82.9% 72.8%

EI 92.8% 93.9% 76.9%

GS 94.7% 91.2% 84.9%

JA 91.0% 85.6% 80.6%

SI 93.3% 90.7% 79.4%

SM 89.1% 84.7% 76.6%

Ave 90.8% 87.4% 78.3%
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tured sound, the composition structure of environmental sound is more complex and usually contains non-har-
monic and non-percussion sound segments. Hence, the HPSS algorithm proposed by Driedge31 is used to divide 
the audio signal into two parts, harmonic and percussive components. It will introduce a new type of separation 
factor to make the separated harmonics and percussive components more standardized.

In this paper, the HPSS algorithm is introduced to process the input Log-Mel spectrograms, which can be 
separated to obtain Harmonic Spectrograms and Percussive Spectrograms. In this way, the harmonic spectrogram 
can clearly illustrate the frequency distribution and frequency band activity of the audio data, shown in Fig. 4. 
In contrast, the impact component in percussive spectrograms has a very intuitive vertical structure, which can 
reflect the difference between the semantic related time frame part (gunshot) and other noise frames.

Generate temporal‑frequency attention mechanism.  Environmental sound has complex time–fre-
quency structure. In time structure, in addition to the semantic related time frame part, it also contains many 
silent or noisy parts. And since audio recording is usually in a polyphonic environment, there will inevitably be 
multiple sound sources, which makes it difficult to have a definite local relationship in the frequency domain. 
Therefore, the function of the proposed temporal attention mechanism is used to focus on the semantic related 
time frame part and suppress noise or silent frames. On the other hand, the frequency attention mechanism is 
introduced to assign more weight to the active frequency bands with distinguishing information, while to de-
weighted for irrelevant frequency bands with less information.

As shown in Fig. 5, after standardizing the Log-Mel spectrogram X, the harmonic spectrogram and percus-
sion spectrogram are separated by using the HPSS algorithm. Then, the convolution kernels with sizes of (1 × 3) 
and (5 × 1) are used to perform convolution operation on harmonic spectrograms and percussive spectrograms 
respectively to extract nonlinear features, until the time dimension of harmonic spectrograms and the frequency 
dimension of percussive spectrograms are reduced to 1, and then (1 × 1) convolution is used to compress channel 
information. In this way, two one-dimensional matrices AF and AT with sizes (F, 1) and (1, T) can be obtained. 
Finally, we use the Softmax function to normalize these two matrices to generate the frequency weight matrix 
Fw and the temporal weight matrix Tw.

Figure 3.   The overall architecture of the proposed TFCNN classification model.

Figure 4.   Harmonic Spectrograms and Percussive Spectrograms separated from the Log-Mel Spectrogram of 
the gunshot category using the HPSS algorithm.
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Next, the Log-Mel spectrogram X is point-multiplied with the obtained attention weight matrix in the time 
direction and the frequency direction respectively to obtain the frequency attention spectrogram SF and the 
temporal attention spectrogram ST , The expression is as follows:

Since the time and frequency domain of the spectrogram contains time and frequency feature information 
respectively, it is very different from the image in the visual classification task. The proposed two attention 
mechanisms can pay different attention to time frame and frequency band respectively, by combining the two 
mechanisms, the time and frequency features can be enhanced simultaneously to form complementary infor-
mation. In general, the combination method is parallel or concatenation design, but the use of concatenation 
design to apply two kinds of attention to the spectrum in turn may cause the two mechanisms to interfere with 
each other, thus resulting in reduced system robustness. Therefore, this paper uses a parallel approach to design 
three combination strategies to combine the two mechanisms into a unified model.

The first strategy is referred to as average combination. Obtain frequency attention spectrogram SF and tem-
poral attention spectrogram ST by applying two attention mechanisms to Log-Mel spectrogram. Next, the two 
attention spectrograms are fused into the final temporal-frequency attention spectrogram ST&F based on a 1:1 
ratio. The specific operation process is as follows:

The second strategy is referred to as weighted combination. Set up two learnable parameters α and β in the 
network, and limit them to α+ β = 1 . The final temporal-frequency attention spectrogram ST&F is obtained 

(1)Fw(f) =
exp(AF(f, 1))

∑F
i=1 exp(AF(i, 1))

, 1 ≤ f ≤ F

(2)Tw(t) =
exp(AT(1, t))

∑T
j=1 exp(AT

(

1, j
)

)
, 1 ≤ t ≤ T

(3)SF(f) = X(F, t) ∗ Fw, 1 ≤ t ≤ T

(4)ST(t) = X(f, T) ∗ Tw, 1 ≤ f ≤ F

(5)ST&FAverage = ST + SF

Figure 5.   The generation process of two attention mechanisms.
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by fusing the two attention spectrograms SF and  ST according to the ratio of learnable parameters. The process 
can be expressed as:

The last strategy is referred to as channel combination. For the generated two attention spectrograms  SF and 
ST , concatenating them as two-channel output.

Network architecture.  The TFCNN architecture proposed in this paper consists of 6 convolutional layers, 
3 pooling layers and 2 fully connected layers. Every two convolutional layers use the same parameters can be 
regarded as a block, and each block is accompanied by a max-pooling layer of size 2 × 2. The first two convolu-
tional layers use 32 kernels with a size of 5 × 3, and the stride is set to 2. The kernel numbers of the remaining 
four convolutional layers are 64 and 128 respectively, the kernel size is 3 × 3, and the stride is 1. Finally, two fully 
connected layers with 256 hidden units are used on the flat output, and the output is further sent to the "Softmax" 
classifier to obtain the prediction result. In addition, the ReLU function is used as an activation function, batch 
normalization (BN) is used in each convolutional layer to speed up training, and a dropout mechanism is added 
to the fully connected layer with a probability of 0.5 to prevent overfitting.

Decision strategy.  In the process of feature processing, the log-Mel spectrogram divided into 64-frame 
sub-segments with a 50% overlap, and the label category of each sub-segment is consistent with the original 
audio. In the training phase, each sub-segment into the network for training, and predict the category for each 
sub-segment. In the final test phase, it is necessary to predict the entire audio category, and use the strategy 
of probabilistic voting to synthesize the predicted results of multiple sub-segments for judgment, as shown in 
Fig. 6. The mathematical expression is as follows:

where, N represents the number of sub-segments divided into each audio sample, K represents the number of 
categories in the dataset, and f  is the prediction result for each segment.

Experiments and analysis
Experiment setup.  The research in this article was evaluated on the ESC-50 dataset33 and the 
UrbanSound8K34 dataset.

ESC‑50.  The ESC-5033 dataset consists of 50 different categories of audio data, mainly including: animals, natu-
ral soudscapes, water sounds, human non-speech sounds, internal/home sounds and external/urban sounds. 
Each category contains 40 audio data with a length of 5 s, totaling 2.8 h.

UrbanSound8K.  The UrbanSound8K34 dataset contains 10 categories: air conditioner (AC,1000), car horn 
(CH,429), children playing (CP,1000), dog bark (DB,1000), drilling (DR,1000), engine idling (EI,1000), siren 
(SI,929), street music (SM,1000), jackhammer (JA,1000), gunshot (GS,374) contain a total of 8732 short audio 
clips (no more than 4 s), and the duration is about 7.3 h. Since the original audio is recorded at different sampling 
rates, a uniform sampling rate is first required. In addition, there is class imbalance in the dataset, making its 
generalization process rather difficult.

In this article, the Tensorflow framework is used, the development environment is Python 3.6.5, the hardware 
platform is NVIDIA GTX 1080, and Intel Core i7 CPU. The experiment adopted tenfold (UrbanSound8K) and 
fivefold (ESC-50) cross-validation strategies. Network training uses categorical cross entropy as the loss function, 

(6)ST&FWeight = αST + βSF

(7)ST&FChannel = joint( ST; SF)

(8)C = argmax





1

N

N
�

j=1

fji



, 1 ≤ i ≤ K

Figure 6.   Probabilistic voting to predict the entire audio category.
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and uses the Adam optimizer for optimization. The learning rate, batch size and training epoch are set to 0.001, 
100 and 200 respectively.

To evaluate the experimental results, this paper uses classification accuracy as a metric:

Experimental analysis and visualization.  To demonstrate the effectiveness of the methods proposed 
in this paper, we evaluated the baseline system and three combination strategies on the UrbanSound8K dataset. 
Based on the experimental results in Table 3, the following conclusions can be drawn: (1) Using the attention 
mechanism can indeed improve classification performance of the model. Compared with the model without 
the attention mechanism, the accuracy rate has been significantly improved. (2) The classification performance 
of the model after using the frequency attention mechanism is better than that of applying temporal atten-
tion mechanism. Considering the unstructured nature of environmental sound, it is obviously more effective to 
enhance the frequency features. (3) The proposed combination strategy has a further improvement in perfor-
mance. Among the three combination strategies, the performance of weight combination is significantly better 
than the other two strategies. This illustrates that the time and frequency features of sound events do not play an 
equal role for model classification, but have certain emphasis.

We compare the attention mechanism generated by the spectrogram separated by the HPSS algorithm with 
that generated by the original log-Mel spectrogram. The experimental results are shown in Table 4. Although 
the two methods can improve the classification performance of the model, the harmonic spectrogram and the 
percussion spectrogram have clearer horizontal and vertical structure, the effect of promotion is better.

To further explore the impact of different attention mechanisms on the classification performance of the 
proposed model, Fig. 7 provides a difference of the classification accuracy of each sound event after using dif-
ferent attention mechanisms. It can be shown that after applying the attention mechanism, although the overall 
performance of the model has been significantly improved, for each sound event, the promotion effects of dif-
ferent attention mechanisms are not consistent. After using the temporal attention mechanism, it can greatly 
enhance the accuracy of transient sound, such as the "gunshot", "dog bark". For a frequency attention machine, 
the promotion effect is more obvious for continuous sounds such as "siren" and "air conditioner". This behavior 
is to be expected. For a transient sound, the semantic related time frame part in the audio sequence is usually 
discrete and contains a lot of silence and noise, while temporal attention mechanism focuses on specific time 
part, thereby reducing the influence of background noise on it. For continuous sound, the concentrated areas of 
active frequency bands become more prominent and have a strong distinction after applying frequency atten-
tion mechanism.

In addition, after using the weight combination strategy, the accuracy of most sound categories has been fur-
ther improved, but there are still some categories ("air conditioner", "car horn", "children play" and "gunshot") that 
performance has not been enhanced and even have a negative impact. Considering that different sound events 
often have different time–frequency characteristics. This may mean that just setting a pair of learning parameters 
can lead to more outliers in individual categories, which is difficult to satisfy all categories.

In Fig. 8, we provide the confusion matrix generated by the TFCNN model on the UrbanSound8K dataset. 
It shows that "children play" is the most difficult category to distinguish, and the categories of "siren" can be well 
recognized. In particular, "gunshot" and "car horn" are almost hard to be misclassified. Since the sample size 
of these two categories is much smaller than that of other categories, this phenomenon may be caused by the 

(9)Acc =
the number of correctly classified

Total number of test data

Table 3.   Classification accuracy after using different attention mechanisms.

Attention mchanism ESC-50 UrbanSound8K

No attention 79.30% 90.77%

Temporal attention 81.90% 92.11%

Frequency attention 82.90% 92.34%

T-F attention(average) 83.80% 92.91%

T-F attention (weight) 84.40% 93.08%

T-F attention (channel) 82.20% 92.68%

Table 4.   Comparison of attention mechanisms generated by different spectrograms.

Dataset Method No attention T-attention F-attention

ESC-50
HPSS

79.30%
81.90% 82.90%

Log-Mel 81.10% 82.40%

UrbanSound8K
HPSS

90.77%
92.11% 92.34%

Log-Mel 91.65% 92.18%
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imbalance of categories. The classification results on the ESC-50 data set are shown in Fig. 9, TFCNN can achieve 
good performance in most categories, of which 37 categories have a classification accuracy of more than 80%, 22 
categories are higher than or equal to 90%, only water drops and washing machine classification accuracy is not 
satisfactory, and 70% accuracy cannot be achieved under any attention mechanism.In addition, by comparing the 
accuracy of various categories under different attention mechanisms, it can be seen that most interior/domestic 
sounds and human (non-speech) sounds, such as "mouse click", "clock tick", "drinking" and "sneezing", belong 
to transient sound events, so they can achieve better performance when time attention mechanism is applied. 

Figure 7.   The difference of classification accuracy of each sound event after using different attention 
mechanisms on the UrbanSound8K datasets.

Figure 8.   Confusion matrix for the classification accuracy of the proposed TFCNN model on UrbanSound8K 
datasets.
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For exterior/urban noises and natural soundscapes sounds, it is obvious that it can show high accuracy after 
frequency attention is applied because it contains most continuous sound events, such as "wind", "hand saw" 
and "helicopter". This result echoes the situation in the UrbanSound8k dataset, which once again illustrates the 
effectiveness and reliability of the attention mechanism.

Figure 10 intuitively shows the changes in the features distribution before and after using temporal-frequency 
attention for several different sound events. It can be clearly seen that after using attention weighting, the time 
frame part and active frequency band containing more useful information get more attention, and the back-
ground noise and irrelevant frequency band are suppressed, so that the feature distribution of sound events 
becomes clearer and more distinguishable.

Comparison to state‑of‑the‑art methods.  As shown in Table 5, the proposed model is compared with 
other models in the Urbansound8K and ESC-50 dataset.

(1)	 Compared with single feature models: Piczak-CNN19, SB-CNN26, M18-CNN27,1D-CNN Gamma28, 
EnvNet232, SoundNet35, Pyramid CNN36, DCNN39 all use a single feature representation. For Piczak-
CNN19, SB-CNN26, Pyramid-Conmbined CNN36, DCNN39 use a two-dimensional feature map as input to 
extract deep features in a way similar to image classification tasks. EnvNet232, M18-CNN27, SoundNet35 
and 1D-CNN Gamma28 use the original waveform as input and extract feature from it. Compared with 
most of the methods described in the above-mentioned literature, the models proposed in this paper have 
achieved absolute improvements.

(2)	 Compared with multi-feature models: DS-CNN37, M-LM-C CNN38, Two-Stream CNN40 and TSCNN-DS41 
all use many different types of feature representations. M-LM-C CNN38 uses a single network architecture, 
which improves the classification performance of the model by providing more discriminatory and comple-
mentary feature representations. DS-CNN37, Two-Stream CNN40 and TSCNN-DS41 use ensemble models. 
Among them, DS-CNN37 and TSCNN-DS41 belong to the scoring ensemble, and they input different types 
of feature representations into two separate sub-networks for training, and finally ensemble the predicted 
results of each sub-network through DS evidence theory. Two-Stream CNN40 belongs to feature ensemble, 
the original audio and Log-Mel spectrogram is respectively input into two separate sub-networks of the 
model to extract feature representation, and then these features are merged to jointly train the model. As 
can be seen from Table 5, our model has better performance than DS-CNN37 and can compete with M-LM-
C CNN38. Although compared with the best models such as Two-Stream CNN40 and TSCNN-DS41, the 
performance of the proposed models cannot be exceeded. But in addition to classification performance, 
another indicator for judging the pros and cons of the ESC method is the model complexity, which can 
be evaluated by comparing the number of trainable parameters. Considering that this paper uses a single 
feature representation and a single network architecture, and only uses a simple CNN to calculate the weight 
in the attention mechanism, the overall parameters are only slightly increased. While ensuring accuracy, it 
also has the advantages of low network structure complexity and simple feature processing, so our method 
is still competitive.

Conclusion
In this paper, a new temporal-frequency attention based convolutional neural network model (TFCNN) is 
proposed for environmental sound classification. By introducing the developed temporal-frequency attention 
mechanism on the basic CNN architecture, the calculations used for representation learning can be concentrated 
on specific areas with discriminative information, thereby effectively capture critical time–frequency features. 

Figure 9.   The classification accuracy of the TFCNN model on the ESC-50 datasets.
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Experiments on the UrbanSound8K and ESC-50 dataset show that its classification accuracy is higher than 93.1% 
and 84.4%, respectively. Compared with the previous models on this dataset, our model has the advantages 
of low network structure complexity and simple feature processing while ensuring accuracy. In addition, this 
paper evaluates the classification performance of the model under several different attention mechanisms, and 
discusses their impact on each sound event. In the future work, we plan to continue to optimize the weighted 
combination strategy, according to the degree of dependence of different types of sound events on time and 
frequency features, and then selectively set the fusion parameters suitable for this category to further improve 
the performance of the model.

Figure 10.   Visualize the feature distribution before and after the use of temporal-frequency attention for several 
sound events. The first row is the original feature distribution, and the second row is the attention-weighted 
feature distribution.
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