Table 1 shows the numerical estimation of base fluid and solid nanoparticles21.
Material | Base fluid (blood) | Gold nanoparticles |
---|---|---|
\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\tilde{\rho }} \left( {{\raise0.7ex\hbox{${\overline{k}g}$} \!\mathord{\left/ {\vphantom {{\overline{k}g} {\overline{m}^{3} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\overline{m}^{3} }$}}} \right)\) | 1053 | 1250 |
\(c_{p} \left( {{\raise0.7ex\hbox{${\ddot{J}}$} \!\mathord{\left/ {\vphantom {{\ddot{J}} {\overline{k}g}}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\overline{k}g}$}}\hat{K}} \right)\) | 3594 | 129 |
\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\tilde{k}} \left( {{{\overline{W}} \mathord{\left/ {\vphantom {{\overline{W}} {\overline{m}\hat{K}}}} \right. \kern-\nulldelimiterspace} {\overline{m}\hat{K}}}} \right)\) | 0.492 | 318 |
\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\beta }_{T} \times 10^{ - 5} \left( {\hat{K}^{ - 1} } \right)\) | 0.8 | 1.41 |
\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\tilde{\sigma }} \left( {{{\hat{S}} \mathord{\left/ {\vphantom {{\hat{S}} {\overline{m}}}} \right. \kern-\nulldelimiterspace} {\overline{m}}}} \right)\) | 0.18 | \(4.1 \times 10^{ - 7}\) |