Table 1 Thermo-physical features for nano liquids.

From: The improved thermal efficiency of Prandtl–Eyring hybrid nanofluid via classical Keller box technique

Features

Nano liquid

Dynamical viscidness \((\mu )\)

\(\mu_{nf} = \mu_{f} (1 - \phi )^{ - 2.5}\)

Density \((\rho )\)

\(\rho_{nf} = \left( {1 - \phi } \right)\rho_{f} - \phi \rho_{s}\)

Heat capacity \((\rho C_{p} )\)

\((\rho C_{p} )_{nf} = \left( {1 - \phi } \right)(\rho C_{p} )_{f} - \phi (\rho C_{p} )_{s}\)

Thermal conductivity \((\kappa )\)

\(\frac{{\kappa_{nf} }}{{\kappa_{f} }} = \left[ {\frac{{\left( {\kappa_{s} + \left( {m - 1} \right)\kappa_{f} } \right) - \left( {m - 1} \right)\phi \left( {\kappa_{f} - \kappa_{s} } \right)}}{{\left( {\kappa_{s} + \left( {m - 1} \right)\kappa_{f} } \right) + \phi \left( {\kappa_{f} - \kappa_{s} } \right)}}} \right]\)