Table 3 Comparison of the prediction performances of the prediction models on the test dataset.

From: Artificial intelligence to predict in-hospital mortality using novel anatomical injury score

Model

TN

FP

FN

TP

Sensitivity (%)

Specificity (%)

Accuracy (%)

Balanced accuracy (%)

AUROC

LR (AIS)

3200

449

32

95

74.80

87.70

87.26

81.25

0.8770

RF (AIS)

2720

929

20

107

84.25

74.54

74.87

79.40

0.8598

SVM (AIS)

3032

617

21

106

83.46

83.01

83.10

83.28

0.8943

DNN (AIS)

3230

419

33

94

74.02

88.52

88.03

81.27

0.8819

LR (Region-6)

3059

590

25

102

80.32

83.83

83.72

82.07

0.8819

RF (Region-6)

3090

559

24

103

81.10

84.68

84.56

82.89

0.8867

SVM (Region-6)

3009

640

23

104

81.89

82.46

82.44

82.18

0.8712

DNN (Region-6)

3028

621

20

107

84.25

82.98

83.02

83.62

0.8871

LR (Region-46)

3109

540

24

103

81.10

85.20

85.06

83.15

0.9013

RF (Region-46)

3054

595

23

104

81.89

83.69

83.63

82.79

0.8853

SVM (Region-46)

3091

558

23

104

81.89

84.71

84.61

83.30

0.8829

DNN (Region-46)

3161

488

21

106

83.46

86.63

86.52

85.05

0.9084

ISS-16

2944

705

25

102

80.31

80.68

80.67

80.50

0.8709

ISS-25

3387

262

65

62

48.82

92.82

91.34

70.82

 

NISS-16

2618

1031

17

110

86.61

71.75

72.25

79.18

0.8681

NISS-25

3241

408

44

83

65.35

88.82

88.03

77.09