Table 1 Thermo-physical aspects of nanofluid.

From: RETRACTED ARTICLE: A brief comparative examination of tangent hyperbolic hybrid nanofluid through a extending surface: numerical Keller–Box scheme

Features

Nanoliquid

Viscidness \(\left( \mu \right)\)

\(\mu_{nf} = \mu_{f} (1 - \phi )^{ - 2.5}\)

Density \(\left( \rho \right)\)

\(\rho_{nf} = \left( {1 - \phi } \right)\rho_{f} - \phi \rho_{s}\)

Heat capacity \(\left( {\rho C_{p} } \right)\)

\((\rho C_{p} )_{nf} = \left( {1 - \phi } \right)(\rho C_{p} )_{f} - \phi (\rho C_{p} )_{s}\)

Electrical conductivity \(\left( \sigma \right)\)

\(\frac{{\sigma_{nf} }}{{\sigma_{f} }}\) = \(\left[ {1 + \frac{{3\left( {\frac{{\sigma_{s} }}{{\sigma_{f} }} - 1} \right)\phi }}{{\left( {\frac{{\sigma_{s} }}{{\sigma_{f} }} + 2} \right) - \left( {\frac{{\sigma_{s} }}{{\sigma_{f} }} - 1} \right)\phi }}} \right]\)

Thermal conductivity \(\left( \kappa \right)\)

\(\frac{{\kappa_{nf} }}{{\kappa_{f} }} = \left[ {\frac{{\left( {\kappa_{s} + \left( {m - 1} \right)\kappa_{f} } \right) - \left( {m - 1} \right)\phi \left( {\kappa_{f} - \kappa_{s} } \right)}}{{\left( {\kappa_{s} + \left( {m - 1} \right)\kappa_{f} } \right) + \phi \left( {\kappa_{f} - \kappa_{s} } \right)}}} \right]\)