Table 4 Comparison between classification metrics of the different models in the training and validation sets.

From: Machine learning algorithms as new screening approach for patients with endometriosis

Models

Training set

Validation set

Sensitivity

Specificity

F1-score

AUC

Sensitivity

Specificity

F1-score

AUC

Random forest (RF)

0.98

0.8

0.88

0.89

0.92

0.92

0.92

0.92

Logistic regression (LR)

1

0

0

0.5

0.95

0.81

0.87

0.88

Decision tree (DT)

0.82

0.8

0.81

0.82

0.91

0.66

0.77

0.78

eXtreme gradient boosting (XGB)

0.98

0.8

0.88

0.89

0.93

0.92

0.92

0.93

Voter classifier soft

0.98

0.6

0.74

0.75

0.93

0.88

0.9

0.90

Voter classifier hard

0.95

0.8

0.87

0.88

0.91

0.92

0.91

0.92