Table 2 Numeric values of \(\left( {1 + \frac{1}{\beta }} \right)\left. { \, \frac{{d^{2} f}}{{d\zeta^{2} }}} \right|_{\zeta = 0}\) for distinct values of \(\beta ,Ha,\delta_{v}\) when \(\omega = \lambda = 0.5,\Pr = 2,K_{1} = 0.6,\delta_{T} = 0.3,N_{t} = N_{b} = 0.1 = D = H\)\(,\gamma = 0.7,S_{c} = 0.9,K_{2} = 1\)\(K = E = 1,n = 0.1.\)

From: Impact of Newtonian heating and Fourier and Fick’s laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder

\(\beta\)

\(Ha\)

\(\delta_{v}\)

\(- C_{f} {\text{Re}}_{x}^{0.5}\)

1

0.5

0.3

1.3956622

1.2

  

1.3101892

1.4

  

1.2491321

 

0.8

 

1.4442980

 

1

 

1.4773467

 

1.2

 

1.5104225

  

0.3

1.3956622

  

0.5

1.6751228

  

0.7

2.0372521