Figure 1
From: Early stage dental caries detection using near infrared spatial frequency domain imaging

Principles, implementation and analysis techniques in spatial frequency domain imaging. Patterns of light are blurred and attenuated passing through tissue, shown in (a). The depth to which the pattern penetrates before being blurred to the point of uniform illumination is illustrated by the curved line. The imaging of a defect (green circle) is phase-dependent at low spatial frequencies (left) but phase-independent at high spatial frequencies (right). (b) A collimated LED is encoded with an intensity pattern using a digital light projector (DLP). This pattern of light is transmitted through a telescope and a polarizing beam splitter (PBS) to illuminate an extracted tooth. Specular reflections are transmitted through the PBS, whilst back-scattered light is reflected through an imaging system to a CCD camera. From these images (c), the AC image (i.e. the phase-dependent component of the image) can be calculated (d). The AC image signal dependence on pattern spatial frequency (e) yields the reduced scattering coefficient (f), which provides insight not available when using purely visible imaging (g).