Table 5 Random Forest performance measures for AD progression prediction of MCI subjects based on CFA, MRI, PET, genetics, and MH modalities (\(MS2\) test dataset; Second Layer).

From: A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease

Modalities used

Precision (%)

Recall (%)

Accuracy (%)

F1-score (%)

AUC

All

87.50

87.50

87.76

87.75

0.953

CFA

91.30

87.50

89.80

89.81

0.926

MRI

56.67

70.83

59.18

59.66

0.691

PET

72.73

66.67

71.43

71.44

0.812

Genetics

76.00

79.17

77.55

77.58

0.787

MH

57.14

50.00

57.14

57.07

0.562

CFA + MRI

90.91

83.33

87.76

87.86

0.903

CFA + PET

95.45

87.50

91.84

91.95

0.955

CFA + genetics

84.00

87.50

85.71

85.75

0.926

CFA + MH

91.30

87.50

89.80

89.81

0.918

CFA + PET + MRI

88.00

91.67

89.80

89.83

0.949

CFA + PET + genetics

91.67

91.67

91.85

91.83

0.956

CFA + PET + MH

87.50

87.50

87.76

87.75

0.943

CFA + PET + genetics + MRI*

91.70

91.70

91.86

91.84

0.963

CFA + PET + genetics + MH

87.50

87.50

87.76

87.75

0.948

  1. Asterisk ( ): is the subset of features with the best predictive performance.