Table 7 Effect of different deep learning models on the evaluation criteria values for UAV images.
From: Remote sensing image description based on word embedding and end-to-end deep learning
Model features | Fusion | Word | |||||
---|---|---|---|---|---|---|---|
P | R | F | P | R | F | ||
CNN25 | C | 0.8614 | 0.8391 | 0.8501 | 0.8749 | 0.8432 | 0.8588 |
Bi-LSTM28 | B-L | 0.8597 | 0.8324 | 0.8509 | 0.8802 | 0.8466 | 0.8631 |
Attention29 | A | 0.8564 | 0.8312 | 0.8436 | 0.8713 | 0.8422 | 0.8565 |
Dense Net31 | D-N | 0.8658 | 0.8414 | 0.8534 | 0.8679 | 0.8435 | 0.8606 |
Attention-CNN-Bi-LSTM | A-C-B | 0.8732 | 0.8419 | 0.8574 | 0.8766 | 0.8421 | 0.8592 |
Attention-CNN-IndRNN | A-C-I | 0.8751 | 0.8441 | 0.8593 | 0.8708 | 0.8411 | 0.8557 |
CNN_LSTM | C-L | 0.8649 | 0.8307 | 0.8475 | 0.8692 | 0.8411 | 0.8549 |
CNN-Bi-LSTM | C-B | 0.8677 | 0.8324 | 0.8497 | 0.8701 | 0.8420 | 0.8558 |
CNN-IndRNN | C-I | 0.8607 | 0.8369 | 0.8486 | 0.8655 | 0.8382 | 0.8516 |
End-to-end | E2E | 0.8837 | 0.8563 | 0.8698 | 0.9234 | 0.8911 | 0.9069 |