Table 2 Predictive performance comparison in the test set for aggregated and individual models, BP Hospital—A Beneficência Portuguesa de São Paulo, Brazil, 2020.
From: A multipurpose machine learning approach to predict COVID-19 negative prognosis in São Paulo, Brazil
Combination | Best algorithm | AUC [95% C.I.] | Sensitivity | Specificity | PPV | NPV | F1 |
---|---|---|---|---|---|---|---|
ICU + MV | |||||||
Predict ICU | Random forest | 0.959 [0.94; 098] | 0.906 | 0.868 | 0.720 | 0.961 | 0.802 |
Predict MV | 0.912 [0.87; 0.95] | 0.935 | 0.723 | 0.271 | 0.990 | 0.420 | |
Predict death | 0.925 [0.89; 0.96] | 0.969 | 0.730 | 0.290 | 0.995 | 0.446 | |
Only death | |||||||
Predict death | Extra trees | 0.972 [0.95; 1.00] | 0.964 | 0.863 | 0.409 | 0.996 | 0.574 |
ICU + death | |||||||
Predict ICU | XGBoost | 0.965 [0.95; 0.98] | 0.847 | 0.930 | 0.818 | 0.942 | 0.832 |
Predict MV | 0.925 [0.89;0.96] | 0.946 | 0.808 | 0.398 | 0.991 | 0.560 | |
Predict Death | 0.922 [0.89; 0.95] | 1.000 | 0.787 | 0.307 | 1.000 | 0.470 | |
Only MV | |||||||
Predict MV | Extra trees | 0.945 [0.91;0.98] | 0.906 | 0.819 | 0.362 | 0.987 | 0.518 |
MV + death | |||||||
Predict ICU | Random forest | 0.921 [0.89; 0.95] | 0.765 | 0.901 | 0.729 | 0.917 | 0.747 |
Predict MV | 0.940 [0.91; 0.97] | 0.933 | 0.799 | 0.329 | 0.991 | 0.487 | |
Predict death | 0.943 [0.91; 0.98] | 0.963 | 0.794 | 0.306 | 0.996 | 0.464 | |
Only ICU | |||||||
Predict ICU | Random forest | 0.959 [0.94; 0.98] | 0.906 | 0.868 | 0.720 | 0.961 | 0.802 |