Table 4 ConvNet configuration of DenseNet.

From: Deep learning based automated diagnosis of bone metastases with SPECT thoracic bone images

SPECS D121

121 weight layers

input (256 × 256 thoracic image)

7 × 7 conv.

3 × 3 Max pooling

Dense Block (1)

\(\left[ {\begin{array}{*{20}l} {1 \times 1\;{\text{ conv}}.} \\ {3 \times 3 \, \;{\text{conv}}.} \\ \end{array} } \right] \times 6\)

1 × 1 conv.

2 × 2 Average pooling

Dense Block (2)

\(\left[ {\begin{array}{*{20}l} {1 \times 1\;{\text{ conv}}.} \\ {3 \times 3 \, \;{\text{conv}}.} \\ \end{array} } \right] \times 12\)

1 × 1 conv.

2 × 2 Average pooling

Dense Block (3)

\(\left[ {\begin{array}{*{20}l} {1 \times 1 \, \;{\text{conv}}{.}} \\ {3 \times 3\;{\text{ conv}}.} \\ \end{array} } \right] \times 24\)

1 × 1 conv.

2 × 2 Average pooling

Dense Block (4)

\(\left[ {\begin{array}{*{20}l} {1 \times 1\;{\text{ conv}}{.}} \\ {3 \times 3\;{\text{ conv}}{.}} \\ \end{array} } \right] \times 16\)

7 × 7 Global average pooling

FC-2

Soft-max