Table 3 Summary table of performance measures of the second layer meta/ensemble learners (random forests and boosted trees) combining the predictions of all RadLex-based ML base classifiers from the findings and impression sections.

From: Comparative analysis of machine learning algorithms for computer-assisted reporting based on fully automated cross-lingual RadLex mappings

Ensemble ML-algorithm

Classifiers

Number of features (ML-model outputs)

Most important ML-classifiers/outer fold

Optimized metric

Hyperparameters

Selected number of features or hyperparameter settings on outer fold 1.0–5.0

Accuracy# [95%CI]

ME

AUC

BS

LL

vRF

vRF

8 × ML-models (findings)

Top 1:

ME

ntree = 500, mtry = 2, pvarsel = 8

pvarsel = 8

83.5 [77.7–88.3]

0.17

0.83

0.29

0.47

tRFBS,

vRF-find 1/5

tRFME,

SVM-find 2/5

tRFLL,

ELNET-find 1/5

ELNET,

XGBoost 1/5

SVM-LK, XGBoost, fastText

Top 2:

 

XGBoost-find 1/5

 

tRF-ME-find 2/5

 

fasstext-find 1/5

 

ELNET-find 1/5

vRF

vRF

8 × ML-models (impressions)

Top 1:

ME

ntree = 500, mtry = 2, pvarsel = 8

pvarsel = 8

89.3 [84.3–93.2]

0.11

0.90

0.19

0.34

tRFBS,

fasstext-impr 5/5

tRFME,

Top 2:

tRFLL,

svm-impr 1/5

ELNET,

XGBoost-impr 2/5

SVM-LK, XGBoost, fastText

tRF-BS-impr 1/5

 

ELNET-impr 1/5

vRF

vRF

16 × ML-models

Top 1:

ME

ntree = 500, mtry = 4, pvarsel = 16

pvarsel = 16

88.8 [83.7–92.8]

0.11

0.90

0.20

0.36

tRFBS,

(8 × findings &

fasstext-impr 5/5

tRFME,

8 × impressions)

Top 2:

tRFLL,

svm-impr 3/5

ELNET,

tRF-BS-impr 1/5

SVM-LK, XGBoost, fastText

ELNET-impr 1/5

XGBoost

vRF

16 × ML-models

Top 1:

ME

nrouds/ntree = [5, 10, 25, 50, 75, 100]

nrounds = [75, 5, 75, 5, 10]

87.4 [82.0–91.6]

0.13

0.87

0.30

0.46

tRFBS,

(findings & impressions)

fasstext-impr 3/5

max_depth = [3, 5, 6, 8]

max_depth = [3, 6, 5, 3, 5]

tRFME,

svm-impr 2/5

eta = [0.01, 0.1, 0.3]

eta = [0.3, 0.01, 0.1, 0.01, 0.1]

gamma = [1, 0.01, 0.1, 0, 0.5]

colsample_bytree = [0.1, 0.5, ln2~RF, 0.1, 0.25]

tRFLL,

Top 2:

gamma = [0, 0.001, 0.01, 0.1, 0.5, 1]

ELNET,

fasstext-impr 2/5

colsample_bytree = [0.1, 0.25, 0.5, 0.693 (ln2) ~ RF, 1.0],

SVM-LK, XGBoost, fastText

tRF-BS-impr 2/5

min_child_weight = 1,

 

svm-impr 1/5

subsample = 1

  1. AUC: multiclass area under the ROC after Hand and Till (that can only be calculated if probabilities are scaled to 1), us var.filt: unsupervised variance filtering using p = 300 most variable RadLex terms -this step was previous of training to prevent information leakage, BS: Brier score, ME: misclassification error, LL: multiclass log loss, vRF and tRF: vanilla- and tuned random forests, ELNET: elastic net penalized multinomial logistic regression, SVM: support vector machines, LK: linear kernel SVM, n.SV: number of support vectors; XGBoost: extreme gradient boosting using trees as base learners, BT: boosted trees.