Table 3 Performance of node classification in micro-F1 and macro-F1.

From: Leveraging graph-based hierarchical medical entity embedding for healthcare applications

Algorithms

Micro-F1

Macro-F1

20%

40%

60%

80%

20%

40%

60%

80%

ME2Vec

0.869

0.877

0.878

0.879

0.664

0.679

0.682

0.676

metapath2vec

0.865

0.868

0.869

0.870

0.522

0.551

0.574

0.577

node2vec (service)

0.865

0.875

0.876

0.878

0.613

0.630

0.632

0.640

node2vec (doctor)

0.850

0.862

0.860

0.861

0.474

0.466

0.462

0.463

LINE (service)

0.855

0.864

0.866

0.866

0.587

0.592

0.592

0.586

LINE (doctor)

0.854

0.863

0.860

0.861

0.470

0.465

0.462

0.463

SC (service)

0.862

0.861

0.861

0.868

0.463

0.463

0.463

0.465

SC (doctor)

0.862

0.861

0.861

0.868

0.463

0.463

0.463

0.465

NMF (service)

0.868

0.870

0.869

0.879

0.584

0.586

0.589

0.600

NMF (doctor)

0.861

0.860

0.860

0.867

0.469

0.472

0.470

0.469

  1. Bolded numbers indicate best performance compared with the rest in the column.