Table 3 Performance of node classification in micro-F1 and macro-F1.
From: Leveraging graph-based hierarchical medical entity embedding for healthcare applications
Algorithms | Micro-F1 | Macro-F1 | ||||||
---|---|---|---|---|---|---|---|---|
20% | 40% | 60% | 80% | 20% | 40% | 60% | 80% | |
ME2Vec | 0.869 | 0.877 | 0.878 | 0.879 | 0.664 | 0.679 | 0.682 | 0.676 |
metapath2vec | 0.865 | 0.868 | 0.869 | 0.870 | 0.522 | 0.551 | 0.574 | 0.577 |
node2vec (service) | 0.865 | 0.875 | 0.876 | 0.878 | 0.613 | 0.630 | 0.632 | 0.640 |
node2vec (doctor) | 0.850 | 0.862 | 0.860 | 0.861 | 0.474 | 0.466 | 0.462 | 0.463 |
LINE (service) | 0.855 | 0.864 | 0.866 | 0.866 | 0.587 | 0.592 | 0.592 | 0.586 |
LINE (doctor) | 0.854 | 0.863 | 0.860 | 0.861 | 0.470 | 0.465 | 0.462 | 0.463 |
SC (service) | 0.862 | 0.861 | 0.861 | 0.868 | 0.463 | 0.463 | 0.463 | 0.465 |
SC (doctor) | 0.862 | 0.861 | 0.861 | 0.868 | 0.463 | 0.463 | 0.463 | 0.465 |
NMF (service) | 0.868 | 0.870 | 0.869 | 0.879 | 0.584 | 0.586 | 0.589 | 0.600 |
NMF (doctor) | 0.861 | 0.860 | 0.860 | 0.867 | 0.469 | 0.472 | 0.470 | 0.469 |