Table 3 Confusion matrix (actual versus predicted classes), accuracy, sensitivity, specificity, AUROC of the support vector machine classification on each of 11 models.

From: Machine learning prediction of pathologic myopia using tomographic elevation of the posterior sclera

Model

Variables

Predicted

Actual classes

Accuracy (%)

Sensitivity (%)

Specificity (%)

AUROC (%)

Healthy

PM

1

TEPS fovea→disc and TEPS fovea→DPE

Healthy

189

9

85.27

77.50

86.70

82.10

PM

29

31

2

TEPS distance and TEPS fovea→DPE

Healthy

177

9

80.62

77.50

81.19

79.3

PM

41

31

3

TEPS disc→DPE and TEPS fovea→DPE

Healthy

190

9

85.6

77.50

87.16

82.33

PM

28

31

4

TEPS distance and TEPS fovea→disc

Healthy

190

14

83.72

65.50

87.1

76.08

PM

28

26

5

TEPS disc→DPE and TEPS fovea→disc

Healthy

189

9

85.27

77.50

86.70

82.10

PM

29

31

6

TEPS distance and TEPS disc→DPE

Healthy

201

21

85.27

47.50

92.20

69.85

PM

17

19

7

4 TEPS variables

Healthy

192

9

86.43

77.50

88.07

82.79

PM

26

31

8

AL

Healthy

174

14

77.52

65.00

79.82

72.41

PM

44

26

9

CT

Healthy

165

15

73.64

62.50

75.69

69.09

PM

53

25

10

AL & CT

Healthy

167

10

76.36

75.00

76.61

75.80

PM

51

30

11

All variables

Healthy

204

8

91.47

80.00

93.58

86.47

PM

14

32

  1. AL axial length, AUROC area under receiver operating characteristic curve, CT choroidal thickness, DPE deepest point of the eyeball, PM pathologic myopia, TEPS tomographic elevation of the posterior sclera.