Table 4 The performance of Kernel SVM, decision tree, random forest, KNN, and Naïve Bayes using all six ocular instrumentation features.

From: Machine learning prediction of pathologic myopia using tomographic elevation of the posterior sclera

Model

Predicted

Actual classes

Accuracy (%)

Sensitivity (%)

Specificity (%)

AUROC (%)

Healthy

PM

Kernel SVM

Healthy

204

8

91.47

80.00

93.58

86.79

PM

14

32

Decision Tree

Healthy

186

8

84.50

80.00

85.32

82.66

PM

32

32

Random Forest

Healthy

204

10

90.70

75.00

93.58

84.29

PM

14

30

KNN

Healthy

190

10

85.27

75.00

87.16

81.08

PM

28

30

Naïve Bayes

Healthy

196

9

87.98

77.50

89.91

83.70

PM

22

31

  1. AUROC area under receiver operating characteristic curve, SVM support vector machine, PM pathologic myopia.