Table 2 Thermo-physical traits of \({\text{TiO}}_{2} + {\text{Ag}}/{\text{blood}}\)11,36.

From: Mixed convection stagnation point flow of the blood based hybrid nanofluid around a rotating sphere

Viscosity

\(\mu_{hnf} = {{\mu_{f} } \mathord{\left/ {\vphantom {{\mu_{f} } {\left( {1 - \phi_{1} } \right)^{2.5} \left( {1 - \phi_{2} } \right)^{2.5} }}} \right. \kern-\nulldelimiterspace} {\left( {1 - \phi_{1} } \right)^{2.5} \left( {1 - \phi_{2} } \right)^{2.5} }}\)

Density

\(\rho_{hnf} = \left( {1 - \phi_{2} } \right)\,\,\,\left\{ {\phi_{1} \, \rho_{{S_{1} }} + \,\,\left( {1 - \phi_{1} } \right) \, \,\rho_{f} } \right\} + \phi_{2} \, \rho_{{S_{2} }}\)

Specific heat

\({{\left( {\rho \, c_{p} } \right)_{hnf} } \mathord{\left/ {\vphantom {{\left( {\rho \, c_{p} } \right)_{hnf} } {\left( {\rho \, c_{p} } \right)_{f} }}} \right. \kern-\nulldelimiterspace} {\left( {\rho \, c_{p} } \right)_{f} }} = \left( {1 - \phi_{2} } \right) \cdot \left( {1 - \phi_{1} } \right) + \phi_{1} \cdot {{\left( {\rho \, c_{p} } \right){}_{{S_{1} }}} \mathord{\left/ {\vphantom {{\left( {\rho \, c_{p} } \right){}_{{S_{1} }}} {\left( {\rho \, c_{p} } \right)_{f} }}} \right. \kern-\nulldelimiterspace} {\left( {\rho \, c_{p} } \right)_{f} }} + \phi_{2} \, \cdot {{\left( {\rho \, c_{p} } \right){}_{{S_{2} }}} \mathord{\left/ {\vphantom {{\left( {\rho \, c_{p} } \right){}_{{S_{2} }}} {\left( {\rho \, c_{p} } \right)_{f} }}} \right. \kern-\nulldelimiterspace} {\left( {\rho \, c_{p} } \right)_{f} }}\)

Thermal conductivity

\({{k_{nf} } \mathord{\left/ {\vphantom {{k_{nf} } {k_{f} }}} \right. \kern-\nulldelimiterspace} {k_{f} }} \, = \left\{ {\frac{{2k_{nf} + k_{{S_{1} }} - 2\phi_{2} \cdot \left( {k_{nf} - k_{{S_{1} }} } \right)}}{{2k_{nf} + k_{{S_{1} }} + 2\phi_{2} \cdot \left( {k_{nf} - k_{{S_{1} }} } \right)}}} \right\} \cdot \left\{ {\frac{{2k_{f} + k_{{S_{2} }} - 2\phi_{1} \cdot \left( {k_{f} - k_{{S_{2} }} } \right)}}{{2k_{f} + k_{{S_{2} }} - 2\phi_{1} \cdot \left( {k_{f} - k_{{S_{2} }} } \right)}}} \right\}\)