Table 3 Results from the linear regression models to predict daily self-report variables using the physical activity features.

From: A multimodal analysis of physical activity, sleep, and work shift in nurses with wearable sensor data

 

SWLS

STAI

PSQI

PA

NA

Std \(\beta\)

Std. \(\beta\)

Std. \(\beta\)

Std. \(\beta\)

Std. \(\beta\)

Intercept

− 0.61*

0.20

0.38

0.47

0.60*

Age [< 40 years]

0.42

− 0.23

− 0.40

0.24

− 0.26

Gender [female]

0.35

− 0.08

0.25

− 0.44

− 0.49*

Shift [day shift]

0.41

− 0.13

− 0.69**

-0.24

− 0.23

Rest-activity ratio (off-day)

− 0.16

0.37

0.05

− 0.66**

0.07

Shift [day shift] × rest-activity ratio (off-day)

0.51

− 0.22

0.04

0.57*

− 0.09

Number of observations

94

95

94

95

95

Adjust \(R^2\)

0.131**

0.036

0.160**

0.112**

0.024

 

SWLS

STAI

PSQI

PA

NA

Std \(\beta\)

Std. \(\beta\)

Std. \(\beta\)

Std. \(\beta\)

Std. \(\beta\)

Intercept

− 0.51*

0.32

0.42

0.18

0.58*

Age [< 40 years]

0.32

− 0.35

− 0.44*

0.43*

− 0.25

Gender [female]

0.27

− 0.19

0.22

− 0.25

− 0.47

Shift [day shift]

0.41

− 0.14

− 0.70**

− 0.23

− 0.23

Walk-activity ratio (off-day)

0.26

− 0.43*

− 0.05

0.44*

− 0.11

Shift [day shift] × walk-activity ratio (off-day)

− 0.62**

0.41

0.02

− 0.13

0.22

Number of observations

94

95

94

95

95

Adjust \(R^2\)

0.142**

0.051

0.155**

0.152**

0.034

  1. Statistical significance is denoted with **\(p < 0.01\), *\(p < 0.05\).