Table 5 Results from the linear regression models to predict pre-study self-report variables using the physical activity features.

From: A multimodal analysis of physical activity, sleep, and work shift in nurses with wearable sensor data

 

SWLS

STAI

PSQI

PA

NA

Std \(\beta\)

Std. \(\beta\)

Std. \(\beta\)

Std. \(\beta\)

Std. \(\beta\)

Intercept

− 0.69**

0.31

0.41

0.20

0.58*

Age [< 40 years]

0.20

− 0.35

− 0.48*

0.44*

− 0.35

Gender [female]

0.41

− 0.02

0.19

− 0.36

− 0.37

Shift [day shift]

0.50*

− 0.23

− 0.60**

− 0.18

− 0.25

Sleep duration (off-day)

− 0.26

0.26

0.15

− 0.14

0.07

Shift [day shift] × sleep duration (off-day)

0.34

− 0.34

− 0.25

0.04

− 0.32

Number of observations

94

94

93

94

94

Adjust \(R^2\)

0.094*

0.035

0.140**

0.073*

0.051*

 

SWLS

STAI

PSQI

PA

NA

Std \(\beta\)

Std. \(\beta\)

Std. \(\beta\)

Std. \(\beta\)

Std. \(\beta\)

Intercept

− 0.65*

0.28

0.68**

0.07

0.61*

Age [< 40 years]

0.22

− 0.38

− 0.46*

0.50*

− 0.28

Gender [female]

0.39

− 0.02

0.19

− 0.40

− 0.41

Shift [day shift]

0.47*

− 0.22

− 0.90**

− 0.06

− 0.33

Sleep efficiency (off-day)

0.08

− 0.04

− 1.45**

0.79

− 0.17

Shift [day shift] × sleep efficiency (off-day)

− 0.09

− 0.12

1.41**

− 0.79

0.09

Number of observations

94

94

93

94

94

Adjust \(R^2\)

0.053

0.020

0.202**

0.081*

0.028

  1. Statistical significance is denoted with **\(p < 0.01\), *\(p < 0.05\).