Table 4 Input data modality ablation study for skin lesion management prediction results \(\rm{MGMT}_{\rm{pred, multi}}\) obtained using a multi-task model.

From: Predicting the clinical management of skin lesions using deep learning

Experiment name

Input data

Metrics

Clinical image

Dermoscopic image

Patient metadata

Sensitivity

Specificity

Precision

AUROC

Overall accuracy

\({\rm{C}}\)

✓

✗

✗

0.5997

0.7911

0.5466

0.7781

0.6051

\({\rm{CM}}\)

✓

✗

✓

0.6050

0.7983

0.5684

0.7852

0.6405

\({\rm{D}}\)

✗

✓

✗

0.6935

0.8384

0.6265

0.8630

0.6962

\({\rm{DM}}\)

✗

✓

✓

0.7126

0.8424

0.6622

0.8644

0.7215

\({\rm{CD}}\)

✓

✓

✗

0.5830

0.8060

0.7393

0.8335

0.7342

\({\rm{CDM}}\)

✓

✓

✓

0.6893

0.8299

0.7134

0.8505

0.7367

  1. Each experiment is named so as to denote the input data modalities it uses to make the management predictions, and ‘C’, ‘D’, and ‘M’ refer to clinical image, dermoscopic image, and patient metadata, respectively.