Table 2 F1, recall, and precision metrics are reported for two intersection over union thresholds, 0.5 and 0.7.
Segmentation Methods | Aggregated Jaccard Index | Mean Avg. Precision | F1(0.7) | Recall(0.7) | Precision(0.7) | F1(0.5) | Recall(0.5) | Precision(0.5) |
---|---|---|---|---|---|---|---|---|
(a) Nuclei segmentation results for the MoNuSeg test dataset | ||||||||
Otsu | 0.0456 | 0.0677 | 0.0310 | 0.0255 | 0.0396 | 0.1619 | 0.1331 | 0.2065 |
Watershed | 0.0828 | 0.1581 | 0.0863 | 0.0591 | 0.1594 | 0.2743 | 0.1880 | 0.5070 |
Fiji | 0.3396 | 0.2370 | 0.1828 | 0.1447 | 0.2481 | 0.4411 | 0.3493 | 0.5986 |
U-Net(VGG-16) | 0.4925 | 0.2736 | 0.2886 | 0.2927 | 0.2845 | 0.6511 | 0.6604 | 0.6420 |
U-Net(VGG-19) | 0.4841 | 0.3007 | 0.3452 | 0.3480 | 0.3426 | 0.6735 | 0.6788 | 0.6683 |
U-Net(ResNet-50) | 0.4882 | 0.3163 | 0.3772 | 0.3884 | 0.3667 | 0.6967 | 0.7173 | 0.6772 |
U-Net(ResNet-101) | 0.4687 | 0.3318 | 0.3242 | 0.2834 | 0.3788 | 0.6133 | 0.5360 | 0.7166 |
U-Net(ResNet-152) | 0.4396 | 0.3119 | 0.3368 | 0.3241 | 0.3506 | 0.6706 | 0.6452 | 0.6980 |
U-Net(DenseNet-121) | 0.4668 | 0.2988 | 0.3579 | 0.3738 | 0.3432 | 0.6796 | 0.7099 | 0.6517 |
U-Net(DenseNet-201) | 0.5083 | 0.3185 | 0.3760 | 0.3884 | 0.3645 | 0.6980 | 0.7208 | 0.6765 |
U-Net(Inception-v3) | 0.4440 | 0.2879 | 0.3044 | 0.3005 | 0.3085 | 0.6422 | 0.6339 | 0.6507 |
Mask R-CNN | 0.5282 | 0.3884 | 0.4028 | 0.3518 | 0.4773 | 0.6648 | 0.5813 | 0.7859 |
U-Net Ensemble | 0.4926 | 0.3381 | 0.3791 | 0.3677 | 0.3913 | 0.6957 | 0.6746 | 0.7180 |
GB U-Net | 0.5331 | 0.3909 | 0.4007 | 0.3509 | 0.4669 | 0.6862 | 0.6010 | 0.7997 |
(b) Nuclei segmentation results for the TNBC dataset | ||||||||
U-Net(VGG-16) | 0.3538 | 0.1672 | 0.1614 | 0.1581 | 0.1648 | 0.5042 | 0.4940 | 0.5149 |
U-Net(VGG-19) | 0.3829 | 0.1742 | 0.1364 | 0.1226 | 0.1536 | 0.5099 | 0.4585 | 0.5741 |
U-Net(ResNet-50) | 0.3972 | 0.2324 | 0.2701 | 0.2530 | 0.2897 | 0.5638 | 0.5281 | 0.6048 |
U-Net(ResNet-101) | 0.5080 | 0.3306 | 0.2904 | 0.2214 | 0.4217 | 0.5427 | 0.4139 | 0.7882 |
U-Net(ResNet-152) | 0.4063 | 0.2594 | 0.2790 | 0.2478 | 0.3194 | 0.5874 | 0.5216 | 0.6723 |
U-Net(DenseNet-121) | 0.4246 | 0.2929 | 0.3600 | 0.3327 | 0.3922 | 0.6216 | 0.5745 | 0.6772 |
U-Net(DenseNet-201) | 0.4453 | 0.2843 | 0.3604 | 0.3287 | 0.3988 | 0.6298 | 0.5745 | 0.6970 |
U-Net(Inception-v3) | 0.3817 | 0.1962 | 0.1562 | 0.1303 | 0.1947 | 0.4703 | 0.3925 | 0.5864 |
Mask R-CNN | 0.4899 | 0.3449 | 0.4392 | 0.4027 | 0.4830 | 0.6732 | 0.6172 | 0.7403 |
U-Net Ensemble | 0.4836 | 0.2808 | 0.2849 | 0.2430 | 0.3442 | 0.6068 | 0.5176 | 0.7331 |
GB U-Net | 0.5403 | 0.3772 | 0.4205 | 0.3540 | 0.5176 | 0.6581 | 0.5541 | 0.8102 |