Table 2 F1, recall, and precision metrics are reported for two intersection over union thresholds, 0.5 and 0.7.

From: A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural networks

Segmentation Methods

Aggregated Jaccard Index

Mean Avg. Precision

F1(0.7)

Recall(0.7)

Precision(0.7)

F1(0.5)

Recall(0.5)

Precision(0.5)

(a) Nuclei segmentation results for the MoNuSeg test dataset

Otsu

0.0456

0.0677

0.0310

0.0255

0.0396

0.1619

0.1331

0.2065

Watershed

0.0828

0.1581

0.0863

0.0591

0.1594

0.2743

0.1880

0.5070

Fiji

0.3396

0.2370

0.1828

0.1447

0.2481

0.4411

0.3493

0.5986

U-Net(VGG-16)

0.4925

0.2736

0.2886

0.2927

0.2845

0.6511

0.6604

0.6420

U-Net(VGG-19)

0.4841

0.3007

0.3452

0.3480

0.3426

0.6735

0.6788

0.6683

U-Net(ResNet-50)

0.4882

0.3163

0.3772

0.3884

0.3667

0.6967

0.7173

0.6772

U-Net(ResNet-101)

0.4687

0.3318

0.3242

0.2834

0.3788

0.6133

0.5360

0.7166

U-Net(ResNet-152)

0.4396

0.3119

0.3368

0.3241

0.3506

0.6706

0.6452

0.6980

U-Net(DenseNet-121)

0.4668

0.2988

0.3579

0.3738

0.3432

0.6796

0.7099

0.6517

U-Net(DenseNet-201)

0.5083

0.3185

0.3760

0.3884

0.3645

0.6980

0.7208

0.6765

U-Net(Inception-v3)

0.4440

0.2879

0.3044

0.3005

0.3085

0.6422

0.6339

0.6507

Mask R-CNN

0.5282

0.3884

0.4028

0.3518

0.4773

0.6648

0.5813

0.7859

U-Net Ensemble

0.4926

0.3381

0.3791

0.3677

0.3913

0.6957

0.6746

0.7180

GB U-Net

0.5331

0.3909

0.4007

0.3509

0.4669

0.6862

0.6010

0.7997

(b) Nuclei segmentation results for the TNBC dataset

U-Net(VGG-16)

0.3538

0.1672

0.1614

0.1581

0.1648

0.5042

0.4940

0.5149

U-Net(VGG-19)

0.3829

0.1742

0.1364

0.1226

0.1536

0.5099

0.4585

0.5741

U-Net(ResNet-50)

0.3972

0.2324

0.2701

0.2530

0.2897

0.5638

0.5281

0.6048

U-Net(ResNet-101)

0.5080

0.3306

0.2904

0.2214

0.4217

0.5427

0.4139

0.7882

U-Net(ResNet-152)

0.4063

0.2594

0.2790

0.2478

0.3194

0.5874

0.5216

0.6723

U-Net(DenseNet-121)

0.4246

0.2929

0.3600

0.3327

0.3922

0.6216

0.5745

0.6772

U-Net(DenseNet-201)

0.4453

0.2843

0.3604

0.3287

0.3988

0.6298

0.5745

0.6970

U-Net(Inception-v3)

0.3817

0.1962

0.1562

0.1303

0.1947

0.4703

0.3925

0.5864

Mask R-CNN

0.4899

0.3449

0.4392

0.4027

0.4830

0.6732

0.6172

0.7403

U-Net Ensemble

0.4836

0.2808

0.2849

0.2430

0.3442

0.6068

0.5176

0.7331

GB U-Net

0.5403

0.3772

0.4205

0.3540

0.5176

0.6581

0.5541

0.8102

  1. Bolded values identify the highest scoring segmntation method within 1)classical segmentation, 2)U-Net like DCNNs, 3)Mask R-CNN and ensemble networks, with respect to the evaluation metric.