Table 1 The reactions that describe the replication cycle of PV. Numbered steps correspond to individually modeled reactions as described in Fig. 2.

From: Modeling poliovirus replication dynamics from live time-lapse single-cell imaging data

Reaction

Name

Equation

Reactants and products

1

Binding

\({{RNA^{+}_{initial}\ } { \sim Poisson (MOI)}}\)

\(\begin{array}{lc} \text {infecting viron} \rightarrow \\\hspace{3mm} \text {coated genome} \end{array}\)

2

Uncoating

\({t_{uncoat}\ } { \sim {Gamma{(0.02, 0.678)}}}\)

\(\begin{array} {lc} \text{coated genome} \rightarrow \\\hspace{3mm} \text{positive sense genome} \end{array}\)

3

Translation

\(r_{trans} = c_{trans}[RNA^{+}_{lin}]\)

\(\begin{array} {lc} \text{positive sense genome} \rightarrow \\\hspace{3mm} \text{3A + CAP}\end{array}\)

4

Complex formation

\({ {r_{com} =}{\ c_{com}(1- \frac{ [com] }{ com_{max} })[3A]} }\)

\(\begin{array} {lc} \text{positive sense genome + 3A} \rightarrow \\\hspace{3mm} \text{complex + 3CD + positive sense genome} \end{array}\)

5

Circularization

\(r^{i}_{circ} = c_{circ}[3CD]_{i}\)

\(\begin{array} {lc}\text{positive sense genome + complex + 3CD} \rightarrow \\\hspace{3mm} \text{circularized genome}\end{array}\)

6

Replication

\(\begin{array}{l}{{r_{rep+} =}{\ c_{rep \, pos}{[RNA^{+}_{circ}]}{(1-\frac{rep}{rep_{max}})}}} \\ {{r_{rep-} =}{\ c_{rep \, neg}{[RNA^{-}_{circ}]}{(1-\frac{rep}{rep_{max}})}}}\end{array}\)

\(\begin{array}{lc} \text{circularized genome} \rightarrow \\\hspace{3mm} \text{negative sense genome} \\ \text{negative sense genome} \rightarrow \\\hspace{3mm} \text{positive sense genome} \end{array}\)

7

Packaging

\(p_{pack}= 1- e^{-c_{pack}[CAP]}\)

\(\begin{array} {lc} \text{positive sense genome + CAP} \rightarrow \\\hspace{3mm} \text{packaged genome} \end{array}\)

8

Dispersal

\({p_{stay} = c_{stay}(1-p_{pack})}\)

\(\begin{array} {lc} \text{positive sense genome} \rightarrow \\\hspace{3mm} \text{genome dispersed in cell} \end{array}\)

  1. See Schulte et al.23 for a full mathematical description of the model.