Table 1 Summary of model performances for hMOF dataset and CO2 adsorption.

From: Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks

Descriptor

0.01 bar

0.05 bar

0.1 bar

0.5 bar

2.5 bar

Structural

0.45

0.55

0.61

0.67

0.71

Topological

0.57

0.64

0.68

0.75

0.80

T + S

0.70

0.70

0.72

0.78

0.84

T + WE

0.71

0.84

0.85

0.90

0.93

T + S + WE

0.70

0.86

0.88

0.92

0.94

Best model, Fanourgakis et al.11

0.65

0.90

0.93

  1. Machine learning results for carbon dioxide adsorption predictions on the hMOF dataset at different pressures, represented by R2 score. The best performing model for a given pressure is highlighted.