Table 2 Classification accuracy of \(\text {NeurDNet}\) in the two cases of employing binary and probabilistic features.

From: A deep explainable artificial intelligent framework for neurological disorders discrimination

Classifier

Binary features

Probabilistic features

25%

35%

45%

55%

65%

75%

25%

35%

45%

55%

65%

75%

RF (entropy)

85.69

84.24

82.91

81.94

82.43

78.68

86.18

85.43

83.79

82.66

82.20

78.21

RF (gini)

85.43

84.59

83.43

82.35

81.97

78.28

86.49

84.81

84.27

82.63

82.57

78.29

SVM (rbf)

85.68

84.65

84.24

82.19

83.10

79.46

86.33

85.83

85.38

82.09

82.68

79.01

SVM (linear)

84.26

82.69

82.08

81.34

80.78

78.02

85.83

84.77

83.60

82.36

82.02

78.57

NB

83.70

83.55

80.23

81.44

81.67

77.31

85.98

86.42

84.94

83.94

84.15

81.48

LR

85.76

84.41

84.09

83.10

82.83

79.49

87.29

86.10

85.28

83.65

83.38

79.74

AdaBoost

83.97

81.61

80.99

79.95

79.30

75.80

85.03

82.97

81.53

80.01

78.12

73.32

LDA (svd)

79.54

76.25

75.83

73.79

66.21

67.44

77.81

76.41

76.56

72.31

65.12

63.62

LDA (lsqr)

79.54

76.25

75.80

73.77

63.40

49.57

77.81

76.41

76.56

72.31

65.12

49.50

QDA

81.85

83.18

78.69

72.08

63.26

58.62

95.55

93.89

81.73

73.48

56.29

53.13

DT (entropy)

81.21

78.45

77.66

77.63

76.02

74.75

80.40

79.01

77.11

77.57

75.06

71.73

DT (gini)

80.45

80.16

78.51

77.25

77.32

75.25

77.99

78.29

76.89

76.35

74.29

71.84

MLP (10)

85.01

82.40

82.05

81.25

79.79

77.53

84.33

83.03

81.64

80.25

80.04

77.04

MLP (30)

84.64

82.84

82.02

80.85

79.63

77.49

84.53

82.80

81.79

80.50

80.33

77.45

  1. The classification accuracy is measured across different choices of the second-stage classifier, including random forests (RF), support vector machines (SVM), Naive Bayes Classifier (NB), logistic regression (LR), AdaBoost classifier (AB), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), decision trees (DT), and multi layer perceptron (MLP).