Table 3 Performance table of training models.

From: Efficient and accurate identification of ear diseases using an ensemble deep learning model

Transferred models

Accuracy

GPU time (s)

Parameters

Processing time (s)

MoblieNet-V2

93.455

27,240

2,235,200

0.0374

MoblieNet-V3

93.884

24,758

2,946,622

0.0357

Inception-V4

93.000

98,270

42,681,353

0.1309

ResNet50

93.581

51,098

25,557,032

0.0668

ResNet101

93.632

78,844

42,516,552

0.1099

Inception-ResNet-V2

94.617

111,849

54,318,760

0.1604

DensNet-BC121

94.188

54,192

6,962,056

0.0859

DensNet-BC161

94.564

78,453

26,489,672

0.1707

DensNet-BC169

94.541

56,477

12,497,800

0.1090

DensenetBC1215

94.364

56,079

7,548,920

0.0809

DensenetBC1615

95.099

80,895

27,893,456

0.4512

DensenetBC1695

94.339

58,209

13,122,040

0.1318

Ensemble

0.5708

  1. GPU time is the processing power needed for training and validation the model. Processing time means the time of each model to identify the same input image.