Table 1 Top 30 ranked compounds for leukaemia: the table shows the highest ranked compounds along with their predicted targets and the scores for the predicted targets (Target score).

From: Transcriptional drug repositioning and cheminformatics approach for differentiation therapy of leukaemia cells

Rank

Bioinformatics score

Cheminformatics score

Compound name

Retrospective validation for leukaemia

Retrospective validation for other cancers

Selected for experimental validation

Target 1 name

Target 1 score

Target 1 disease score

Target 2 name

Target 2 score

Target 2 disease score

Target 3 name

Target 3 score

Target 3 disease score

Target 4 name

Target 4 score

Target 4 disease score

Target 5 name

Target 5 score

Target 5 disease score

Target 6 name

Target 6 score

Target 6 disease score

Target 7 name

Target 7 score

Target 7 disease score

1

− 0.81

23

Podophyllotoxin

*76

  

EDNRB

26

30

EDNRA

21

11

F3

20

40

PDE11A

13

3

FKBP1A

13

12

CYP3A4

10

44

NR3C1

9

22

2

− 0.79

15

Leflunomide

*77

  

MTTP

21

2

APOB

19

20

DHODH

16

0

ATF1

14

2

TRPV1

13

12

NFKB1

13

46

RAF1

12

22

3

− 0.79

16

Colchicine

*78

  

TUBB1

37

3

F3

8

40

STS

5

24

BDKRB1

2

11

ALK

2

2

      

4

− 0.79

5

Terazosin

  

*

EHMT2

20

18

CCR4

18

3

ADRA1B

18

4

ADRA1A

15

3

EHMT1

14

0

UBE2N

14

0

PDPK1

8

9

5

− 0.78

7

Prenylamine

 

*79

 

ADRB2

18

9

CASR

16

2

ADRB3

13

3

ADRB1

12

6

C3AR1

9

7

CAPN2

8

17

SSTR2

8

2

6

− 0.78

21

Trimethylcolchicinic acid

*80

  

TUBB1

23

3

STS

14

24

DRD1

8

0

F3

7

40

ALK

6

2

ABCC1

6

57

ACHE

5

18

7

− 0.78

29

Etoposide

*81

  

NCOA3

30

100

F3

23

40

NCOA1

20

16

RORC

15

0

TOP1

13

17

SLC5A1

12

0

   

8

− 0.78

14

Mebendazole

*21

  

TEK

30

14

RAF1

20

22

KDR

17

25

F9

10

0

GRB7

6

14

CHEK2

6

22

ITK

5

3

9

− 0.78

5

Adenosine phosphate

*82

  

RSEL

99

3

IMPDH1

91

4

P2RY2

87

12

P2RY1

70

0

P2RX1

69

0

AHCY

68

12

   

10

− 0.78

5

Cefoperazone

   

SLC22A8

72

9

SLC22A6

66

7

CMA1

44

3

ELANE

35

0

PGF

15

5

      

11

− 0.77

2

Thioridazine

*18

  

HRH1

34

0

DRD1

24

0

DRD2

23

3

CHRM5

20

6

DRD3

18

0

CHRM4

18

3

HRH2

18

0

12

− 0.77

14

Nocodazole

*83

  

TEK

36

14

KDR

21

25

STK33

17

3

ITK

15

3

F9

13

0

RAF1

12

22

ABL1

9

32

13

− 0.77

4

Tetryzoline

   

ADRA2A

27

4

ADRA2B

24

7

NISCH

23

0

ADRA2C

23

3

BDKRB1

21

11

DRD1

12

0

ADRA1A

12

3

14

− 0.77

20

Wortmannin

*20

  

PIK3CA

72

11

MTOR

58

23

MYLK

18

17

ABCB1

10

63

SOAT2

10

3

CYP19A1

9

23

ADCY1

9

4

15

− 0.77

15

Tretinoin

*84

  

RARG

65

11

RARB

65

28

RXRA

64

12

RARA

59

20

RXRG

53

11

RXRB

53

8

RBP4

49

11

16

− 0.77

46

Genistein

*85

  

ALDH2

40

15

ESR2

25

16

ESR1

23

100

TOP2A

20

100

XDH

15

17

CYP1A1

15

38

CYP1B1

15

36

17

− 0.76

15

Ly-294002

*86

  

PRKDC

68

18

PIK3CA

38

11

PIK3CB

32

6

PIK3CD

26

24

PIK3CG

25

18

PIK3C2B

14

3

MTOR

11

23

18

− 0.76

4

Proxymetacaine

  

*

UBE2N

11

0

HTR4

10

0

P2RY12

6

0

PDGFRA

1

4

BCHE

1

18

CHRM4

1

3

MBTPS1

1

3

19

− 0.76

9

Sulfapyridine

*87

  

NTRK1

7

5

CYP2C18

6

10

GRM4

6

0

EDNRA

6

11

HTR6

4

0

EDNRB

4

30

PIK3C3

3

7

20

− 0.75

22

Fenbendazole

 

*31

*

TEK

27

14

AURKB

11

21

RAF1

11

22

KDR

10

25

AURKA

8

13

ITK

7

3

MCL1

5

56

21

− 0.75

4

Mephentermine

   

CASR

12

2

GHSR

10

4

ADRB2

8

9

ADRB1

6

6

ADRB3

5

3

TACR3

2

3

CCKBR

2

3

22

− 0.75

5

Dobutamine

   

ADRB2

32

9

ADRB1

31

6

ADRB3

30

3

PGF

5

5

OPRD1

5

0

OPRM1

4

4

KISS1R

4

11

23

− 0.75

11

Clenbuterol

   

ADRB2

27

9

ADRB1

27

6

ADRB3

18

3

BACE1

3

8

CTSD

1

25

IGF1R

0

16

CYP2D6

-1

11

24

− 0.75

2

Thioridazine (rep)

*18

  

HRH1

34

0

DRD1

24

0

DRD2

23

3

CHRM5

20

6

DRD3

18

0

CHRM4

18

3

HRH2

18

0

25

− 0.75

15

Ly-294002 (rep)

*86

  

PRKDC

68

18

PIK3CA

38

11

PIK3CB

32

6

PIK3CD

26

24

PIK3CG

25

18

PIK3C2B

14

3

MTOR

11

23

26

− 0.75

8

Trichostatin a

*88

  

HDAC6

28

3

HDAC10

25

3

HDAC1

24

17

HDAC8

23

3

HDAC2

23

9

HDAC9

23

11

HDAC11

22

7

27

− 0.74

2

Remoxipride

*89

  

DRD2

28

3

DRD3

10

0

UTS2R

9

0

HCRTR1

9

7

HCRTR2

9

0

HTR4

7

0

   

28

− 0.74

5

Nadide

   

IMPDH1

105

4

P2RY2

90

12

RSEL

86

3

GAPDH

77

18

P2RX1

74

0

P2RY1

70

0

P2RY4

66

0

29

− 0.74

4

Terfedine

*26

  

TACR2

28

3

NPY2R

22

7

HRH1

18

0

CHRM3

11

2

KCNH2

11

10

NPC1L1

10

0

CCR5

10

5

30

− 0.74

27

Ouabain

*y26

  

KLF5

39

0

NR3C1

37

22

ATP12A

30

0

SHBG

28

7

STAT3

24

42

FGF2

23

16

FGF1

23

100

  1. High target scores show high probability of the compound to bind to that protein target based on our in-silico prediction approach. The “Target disease score” shows how much the target is related to the disease according to Comparative Toxicogenomic Database (CTD). Compounds that have retrospective validation and literature support for leukaemia or other cancer types and the ones selected for experimental validation in this work are marked with a * for each relevant column. The Bioinformatics score is the score calculated based on anti-correlation of the compound gene signature and leukaemia differentiation signature. The Cheminformatics score is the rounded average of Target Disease Score for the top seven predicted targets of each compound.