Table 6 Comparison of the classification performance of the base learners and their ensemble using the proposed scheme.

From: A fuzzy rank-based ensemble of CNN models for classification of cervical cytology

Dataset

Method

Accuracy(%)

Precision (%)

Recall (%)

F1-Score (%)

SIPaKMeD 2-Class

Inception v3

97.71

97.65

97.75

97.70

Xception

95.42

95.61

95.22

95.37

DenseNet-169

96.89

96.11

95.65

93.82

Proposed ensemble

98.55

98.57

98.52

98.54

SIPaKMeD 5-Class

Inception v3

94.36

94.40

94.37

94.38

Xception

94.00

93.94

94.00

93.97

DenseNet-169

93.26

93.34

93.27

93.30

Proposed ensemble

95.43

95.34

95.38

95.36

Mendeley LBC

Inception v3

97.69

97.64

97.67

97.65

Xception

98.04

98.11

98.26

98.18

DenseNet-169

98.07

97.47

97.53

97.50

Proposed ensemble

99.23

99.13

99.23

99.18