Table 1 The results of performance evaluation of traditional machine learning algorithms and DeepLabv3+ algorithm.
From: Semantic segmentation of PolSAR image data using advanced deep learning model
Parameter | RF | KNN | SVM | DeepLabv3+ |
---|---|---|---|---|
Pixel accuracyPatch 1 | 74.74% | 78.68% | 74.44% | 83.51% |
Pixel accuracyPatch 2 | 81.09% | 74.31% | 79.59% | 87.78% |
Overall pixel accuracy | 77.92% | 76.48% | 77.02% | 85.65% |
F1 score | 0.7784 | 0.7762 | 0.7646 | 0.8520 |
Precision (Urban Class) | 0.8958 | 0.7984 | 0.8977 | 0.9228 |
Training time | 4204Â s | 41,091Â s | 2803Â s | 13411 s |
Inference time (per scene) | 3.04Â s | 864.94Â s | 0.46Â s | 0.31 s |
Algorithm complexity | \(O\left( {V {\text{x }}NlogN} \right)\)b | \(O\left( {KND} \right)\)b | \(O\left( {N^{2} } \right)\) | \(O\left( N \right)\)a |