Table 1 Feret's diameter of the largest muscle of abdominal segments in male and female flies of the montium group.

From: Evolution of a neuromuscular sexual dimorphism in the Drosophila montium species group

Subgroup/ (Group)

Species

Strain code

Female

Male

Statistical test used

Female-A5 versus Male-A5

Male-A4 versus Male-A5

MOL analog

N

A5

N

A4

 

A5

n

FA/FB

n

FA/FB

n

FA/FB

Statistical significance

Multiplicity adjusted P value

Statistical significance

Multiplicity adjusted P value

Mean ± SEM

Min

Max

Mean ± SEM

Min

Max

Mean ± SEM

Min

Max

montium

D. asahinai

AM06-12

34

68

1.09 ± 0.01

0.90

1.30

35

70

1.12 ± 0.02

0.72

1.53

70

1.14 ± 0.01

0.84

1.52

ANOVA

**

0.005

ns

0.62

−

D. auraria

A662

36

72

1.06 ± 0.01

0.93

1.27

34

68

1.10 ± 0.01

0.94

1.50

68

1.07 ± 0.01

0.91

1.32

ANOVA

ns

0.72

ns

0.17

−

D. baimaii

ML11023

36

72

1.04 ± 0.01

0.89

1.18

36

72

1.18 ± 0.02

0.91

1.45

72

1.38 ± 0.02

0.97

1.82

ANOVA

***

< 0.001

***

< 0.001

+

D. biauraria

B16

35

68

1.02 ± 0.01

0.88

1.23

33

66

1.08 ± 0.01

0.79

1.33

66

1.08 ± 0.01

0.89

1.41

Kruskal–Wallis test

**

0.002

ns

> 0.99

−

D. fengkainensis

XT33

33

66

1.02 ± 0.01

0.88

1.20

36

60

1.10 ± 0.01

0.97

1.30

60

1.08 ± 0.01

0.78

1.25

Kruskal–Wallis test

***

< 0.001

ns

> 0.99

+

D. lacteicornis

IRUR20

41

82

0.97 ± 0.01

0.84

1.39

37

74

1.10 ± 0.01

0.78

1.39

74

1.38 ± 0.02

1.03

1.86

ANOVA

***

< 0.001

***

< 0.001

+

D. neoasahinai

OKNH2K

33

66

1.00 ± 0.01

0.80

1.27

37

70

1.01 ± 0.02

0.74

1.50

70

1.08 ± 0.02

0.84

1.40

Kruskal–Wallis test

**

0.004

**

0.0022

−

D. pectinifera

OGS98m

38

76

1.06 ± 0.01

0.84

1.25

40

80

1.13 ± 0.01

0.92

1.59

80

1.22 ± 0.01

0.85

1.48

ANOVA

***

< 0.001

***

< 0.001

+

D. pseudobaimaii

ML11250

32

64

1.03 ± 0.01

0.80

1.21

34

68

1.13 ± 0.01

0.88

1.43

68

1.08 ± 0.01

0.84

1.40

ANOVA

**

0.002

*

0.02

−

D. rufa

rufa-OGM

37

74

0.98 ± 0.01

0.82

1.26

37

72

1.00 ± 0.01

0.81

1.27

72

1.00 ± 0.01

0.86

1.36

ANOVA

ns

0.28

ns

0.93

−

D. subauraria

ONM29

32

64

1.06 ± 0.01

0.83

1.20

36

72

1.08 ± 0.01

0.80

1.35

72

1.11 ± 0.01

0.91

1.33

ANOVA

**

0.003

ns

0.27

−

D. tani

MES01

36

71

1.01 ± 0.01

0.86

1.25

41

79

1.01 ± 0.01

0.75

1.21

78

1.05 ± 0.01

0.85

1.46

Kruskal–Wallis test

*

0.04

ns

0.11

−

D. trapezifrons

Bavi31

40

79

0.98 ± 0.01

0.85

1.12

39

78

1.14 ± 0.01

0.94

1.49

78

1.10 ± 0.01

0.91

1.46

ANOVA

***

< 0.001

*

0.04

+

D. triauraria

T544

34

68

1.03 ± 0.01

0.78

1.30

34

68

1.11 ± 0.01

0.91

1.47

64

1.04 ± 0.01

0.81

1.28

ANOVA

ns

0.95

***

< 0.001

−

kikkawai

D. bocki

IR2-37

36

72

1.14 ± 0.01

0.97

1.47

37

74

1.26 ± 0.02

0.92

1.63

74

1.41 ± 0.02

1.05

1.92

ANOVA

***

< 0.001

***

< 0.001

+

D. kikkawai

OGH06-01

37

74

1.07 ± 0.01

0.92

1.25

43

86

1.17 ± 0.01

0.75

1.47

86

1.51 ± 0.03

1.15

2.16

Kruskal–Wallis test

***

< 0.001

***

< 0.001

+

D. leontia

AO-2

37

73

1.07 ± 0.01

0.88

1.40

44

88

1.36 ± 0.02

1.02

2.18

88

1.40 ± 0.02

1.06

1.82

ANOVA

***

< 0.001

ns

0.15

+

D. lini

BGS3146.1

33

65

1.03 ± 0.01

0.79

1.33

32

64

1.04 ± 0.01

0.87

1.26

64

1.07 ± 0.01

0.92

1.31

ANOVA

**

0.009

ns

0.05

−

D. ogumai

RGN3

39

77

1.00 ± 0.01

0.79

1.28

37

74

1.11 ± 0.02

0.83

1.62

73

1.23 ± 0.02

0.86

1.52

ANOVA

***

< 0.001

***

< 0.001

+

D. ohnishii

ML45

36

72

1.05 ± 0.01

0.81

1.32

38

76

1.09 ± 0.01

0.81

1.43

76

1.26 ± 0.01

0.96

1.74

ANOVA

***

< 0.001

***

< 0.001

+

punjabiensis

D. punjabiensis

CJB212

35

70

1.06 ± 0.01

0.80

1.30

38

74

1.14 ± 0.01

0.85

1.42

74

1.11 ± 0.02

0.85

1.51

ANOVA

ns

0.07

ns

0.18

−

D. watanabei

14028-0531.02

40

79

1.05 ± 0.01

0.86

1.28

39

77

1.17 ± 0.01

0.95

1.45

78

1.20 ± 0.01

0.84

1.40

ANOVA

***

< 0.001

ns

0.27

+

orosa

D. orosa

14028-0611.00

33

64

1.05 ± 0.01

0.87

1.31

34

68

1.08 ± 0.01

0.88

1.44

68

1.10 ± 0.02

0.91

1.67

ANOVA

*

0.01

ns

0.57

−

serrata

D. barbarae

ML11213

39

77

1.03 ± 0.01

0.85

1.24

36

71

1.23 ± 0.02

0.88

1.81

71

1.60 ± 0.03

1.21

2.22

ANOVA

***

< 0.001

***

< 0.001

+

D. bicornuta

BOG1

11

22

1.09 ± 0.02

0.98

1.35

36

72

1.09 ± 0.01

0.87

1.44

72

1.08 ± 0.01

0.93

1.38

ANOVA

ns

0.85

ns

0.89

−

D. birchii

14028-0521.00

39

77

1.02 ± 0.01

0.87

1.33

37

74

1.11 ± 0.01

0.83

1.47

74

1.15 ± 0.01

0.89

1.34

Kruskal–Wallis test

***

< 0.001

**

0.005

+

D. bunnanda

14028-0721.00

33

66

1.21 ± 0.02

0.91

1.61

33

65

1.35 ± 0.02

1.02

1.73

66

1.28 ± 0.02

0.89

2.17

ANOVA

*

0.03

ns

0.08

−

D. cauverii

cauv-CNRS

37

74

1.14 ± 0.01

0.89

1.40

38

76

1.15 ± 0.01

0.96

1.38

75

1.18 ± 0.01

0.84

1.39

ANOVA

ns

0.07

ns

0.26

−

D. mayri

14028-0591.00

37

73

1.10 ± 0.01

0.86

1.62

36

71

1.22 ± 0.02

0.71

1.76

72

1.53 ± 0.02

1.17

2.02

ANOVA

***

< 0.001

***

< 0.001

+

D. serrata

Q122

41

82

1.09 ± 0.01

0.85

1.29

37

72

1.18 ± 0.01

0.90

1.55

74

1.21 ± 0.02

0.95

1.94

ANOVA

***

< 0.001

ns

0.47

+

D. truncata

RGN179

38

76

1.12 ± 0.01

0.93

1.35

36

72

1.05 ± 0.01

0.92

1.31

72

1.27 ± 0.01

0.99

1.55

ANOVA

***

< 0.001

***

< 0.001

+

seguyi

D. burlai

L6

34

68

1.07 ± 0.01

0.89

1.26

32

64

1.20 ± 0.02

0.96

1.46

64

1.13 ± 0.01

0.90

1.36

ANOVA

**

0.001

**

0.001

−

D. diplacantha

dip05860

39

78

1.15 ± 0.01

0.97

1.70

40

74

1.22 ± 0.02

0.85

1.59

74

1.23 ± 0.01

0.85

1.51

ANOVA

***

< 0.001

ns

0.88

+

D. greeni

14028-0712.00

35

70

1.05 ± 0.01

0.79

1.27

37

74

1.11 ± 0.01

0.79

1.37

73

1.14 ± 0.02

0.88

1.62

ANOVA

***

< 0.001

ns

0.31

+

D. jambulina

F76

36

70

1.04 ± 0.01

0.84

1.25

36

72

1.00 ± 0.01

0.82

1.30

71

1.07 ± 0.01

0.88

1.26

ANOVA

ns

0.11

***

< 0.001

−

D. malagassya

J6

37

73

1.10 ± 0.01

0.79

1.48

35

70

1.14 ± 0.02

0.86

1.47

70

1.07 ± 0.01

0.76

1.31

ANOVA

ns

0.17

*

0.01

−

D. nikananu

14028-0601.00

37

73

1.01 ± 0.01

0.75

1.29

34

62

1.09 ± 0.02

0.68

1.46

62

1.07 ± 0.02

0.80

1.53

ANOVA

*

0.04

ns

0.72

−

D. seguyi

K59

41

81

1.10 ± 0.01

0.87

1.39

37

73

1.14 ± 0.01

0.88

1.53

74

1.18 ± 0.02

0.88

1.64

ANOVA

**

0.002

ns

0.4

−

D. tsacasi

14028-0701.00

33

65

1.06 ± 0.01

0.84

1.45

32

64

1.20 ± 0.02

0.87

1.58

64

1.17 ± 0.01

0.92

1.44

ANOVA

***

< 0.001

ns

0.46

+

D. vulcana

14028-0711.00

38

75

1.07 ± 0.01

0.88

1.69

34

68

1.01 ± 0.01

0.83

1.18

68

1.07 ± 0.01

0.89

1.41

ANOVA

ns

0.96

***

< 0.001

−

parvula

D. kanapiae

14028-0541.00

35

69

1.11 ± 0.02

0.87

1.57

34

67

1.10 ± 0.01

0.92

1.37

67

1.15 ± 0.01

0.90

1.55

ANOVA

ns

0.14

**

0.01

−

D. parvula

ML11218

34

68

1.21 ± 0.01

0.94

1.47

36

70

1.28 ± 0.02

1.00

1.62

70

1.23 ± 0.01

0.98

1.53

ANOVA

ns

0.54

ns

0.07

−

  1. N: The total number of individuals used in this analysis. n: The total number of A4 or A5 hemi-segments examined. F: Feret's diameter (FA and FB), the longest distance of a target muscle. FA/FB: The Feret's diameter ratio obtained by dividing the Feret’s diameter of the longest muscle (FA) by that of the medial-most conventional muscle (FB) in the same hemi-segment. When the mean FA/FB in males is larger than that in females at the statistically significant level of P < 0.001, we judge that the males have the MOL analog or without MOL as indicated by a "+" or "−".