Table 1 Performance analysis of the current literature in comparison to the tenfold average accuracy of the examined SVM-based and ANN models. Bold font indicates the best performance.

From: A neural pathomics framework for classifying colorectal cancer histopathology images based on wavelet multi-scale texture analysis

 

State-of-the-art

Method

Input features

ACC (%)

Literature

Kather et al.10

SVM

GLCM, LBP, Gabor

87.4

Cascianelli et al.11

NNC/VGG-based “off-the-shelf”

LBP, Texture Spectrum, PCA / Deep Features

79.60/84.00

Sarkar et al.12

SDL

Local Gabor filtering

73.7

 

WPT family

Levels

# Features

ACC (avg ± std%)

Baseline SVM

rbio

1

155

84.04 ± 1.98

bior

2

155

83.22 ± 2.34

coif

2

140

83.21 ± 1.24

sym

1

135

83.04 ± 1.63

rbio

2

532

82.76 ± 1.67

bior

2

532

82.18 ± 1.35

coif

2

532

82.16 ± 1.57

db

2

532

82.10 ± 1.68

 

Artificial neural network

Input layers

Hidden layers

ACC (avg ± std%)

Neural pathomics

Number of neurons

64

532

1 × sigmoid

87.84 ± 1.16

128

90.66 ± 1.23

256

92.46 ± 1.24

512

94.34 ± 0.77

1024

94.91 ± 0.91

2048

93.54 ± 2.31

64

532

2 × sigmoid

86.4 ± 1.58

128

89.68 ± 1.84

256

92.77 ± 1.71

512

94.56 ± 2.01

1024

95.32 ± 2.16

2048

94.13 ± 1.94