Table 2 Parameters of the 33 provinces in China with publicly available data COVID-19 outbreak models.

From: A modified SEIR model to predict the behavior of the early stage in coronavirus and coronavirus-like outbreaks

Province

\(N_0\)

\(\sigma \)

\(\beta _{01}\)a

\(\beta _{02}\)b

\(R^2\)

\(\text {Anhui}\)

\(7499.0\pm 1217.0\)

\(30.190\pm 186.9\)

\(0.62\pm 0.067\)

0.91

\(\text {Beijing}\)

\(3947.0\pm 500.8\)

\(60.350\pm 477.4\)

\(0.56\pm 0.036\)

\(10.75\pm 2.726\)

0.78

\(\text {Chongqing}\)

\(2330\pm 67.1\)

\(0.061\pm 0.003\)

\(28.19\pm 2.526\)

0.97

\(\text {Fujian}\)

\(1356 \pm 62.3\)

\(0.054 \pm 0.004\)

\(36.66 \pm 5.359\)

\(250000 \pm 2.8(-14)\)

0.93

\(\text {Gansu}\)

\(288.6\pm 19.1\)

\(2.077\pm 0.531\)

\(1.03\pm 0.07\)

\(3787\pm 3663\)

0.74

\(\text {Guangdong}\)

\(6169\pm 176\)

\(0.05\pm 0.003\)

\(31.84\pm 2.706\)

0.97

\(\text {Guangxi}\)

\(1164.0\pm 46.3\)

\(0.054\pm 0.004\)

\(23.61\pm 2.655\)

0.95

\(\text {Guizhou}\)

\(1086.0\pm 169.5\)

\(22.820\pm 104.8\)

\(0.6\pm 0.061\)

0.91

\(\text {Hainan}\)

\(1119\pm 200\)

\(20.61\pm 95.04\)

\(0.64\pm 0.078\)

0.88

\(\text {Hebei}\)

\(1999\pm 176.8\)

\(46.66\pm 221.6\)

\(0.6\pm 0.032\)

\(96550\pm 1.532\times 10^{-13}\)

0.90

\(\text {Heilongjiang}\)

\(4198\pm 1129\)

\(1.229\pm 0.832\)

\(0.7\pm 0.146\)

\(11.9\pm 6.088\)

0.79

\(\text {Henan}\)

\(8154\pm 975.6\)

\(43.23\pm 261.9\)

\(0.65\pm 0.052\)

0.89

\(\text {Hong Kong}\)

\(2.6\times 10^6\pm 6.9\times 10^7\)

\(0.0003\pm 0.006\)

\(221.3\pm 5691\)

\(3.2\pm 4.698\)

0.83

\(\text {Hubei}\)

\(1.1\times 10^6\pm \)200,600

\(37.26\pm 369.8\)

\(0.45\pm 0.04\)

0.90

\(\text {Hunan}\)

\(5647\pm 537.7\)

\(33.82\pm 113.3\)

\(0.68\pm 0.042\)

0.85

\(\text {Inner Mongolia}\)

\(905.3\pm 247.1\)

\(1.03\pm 0.622\)

\(0.69\pm 0.139\)

\(14.87\pm 8.254\)

0.69

\(\text {Jiangsu}\)

\(2133\pm 65.6\)

\(0.073\pm 0.004\)

\(15.74\pm 1.399\)

100,000\(\pm 1.239\times 10^{-14}\)

0.96

\(\text {Jiangxi}\)

\(3243\pm 99\)

\(0.09\pm 0.006\)

\(10.54\pm 0.937\)

0.96

\(\text {Jilin}\)

\(311.6\pm 8.8\)

\(0.083\pm 0.005\)

\(11.33\pm 0.918\)

\(97710\pm 1.375\times 10^9\)

0.97

\(\text {Liaoning}\)

\(839.6\pm 231.6\)

\(16.75\pm 96.38\)

\(0.67\pm 0.134\)

\(4.53\pm 1.841\)

0.80

\(\text {Macau}\)

\(264.8\pm 110.4\)

\(0.604\pm 0.479\)

\(0.71\pm 0.238\)

\(34.21\pm 46.650\)

0.37

\(\text {Ningxia}\)

\(368.4\pm 96.1\)

\(23.140\pm 175.3\)

\(0.64\pm 0.115\)

0.80

\(\text {Qinghai}\)

\(78.6\pm 4.9\)

\(35.9\pm 73.33\)

\(0.84\pm 0.039\)

0.91

\(\text {Shaanxi}\)

\(1762\pm 298.9\)

\(37.740\pm 291.8\)

\(0.64\pm 0.074\)

0.85

\(\text {Shandong}\)

\(9032\pm 2857\)

\(28.3\pm 370.7\)

\(0.46\pm 0.074\)

0.74

\(\text {Shanghai}\)

\(2567\pm 353.8\)

\(24.33\pm 84.53\)

\(0.65\pm 0.054\)

\(12.51\pm 3.579\)

0.78

\(\text {Shanxi}\)

\(1012\pm 157\)

\(14.22\pm 36.75\)

\(0.64\pm 0.064\)

\(7.34\pm 1.575\)

0.83

\(\text {Sichuan}\)

\(4656\pm 1292\)

\(24.94\pm 230.2\)

\(0.56\pm 0.096\)

0.78

\(\text {Tianjin}\)

\(1061\pm 99.3\)

\(24.32\pm 57.34\)

\(0.6\pm 0.03\)

\(10.81\pm 1.919\)

0.85

\(\text {Tibet}\)

\(\text {Xinjiang}\)

\(801.9\pm 159.9\)

\(25.11\pm 172.6\)

\(0.53\pm 0.061\)

0.89

\(\text {Yunnan}\)

\(1255\pm 102.7\)

\(32.490\pm 77.14\)

\(0.65\pm 0.03\)

\(3.49\pm 4.682\)

0.80

\(\text {Zhejiang}\)

\(7090\pm 1869\)

\(28.35\pm 253\)

\(0.7\pm 0.136\)

0.81

  1. aHuman-to-human infection rate (in cases per day) when the soft governmental measures were implemented on January 23, 2020 \((\alpha =0.4239)\).
  2. bHuman-to-human infection rate (in cases per day) when the hard governmental measures were implemented on January 29, 2020 \((\alpha =0.8478)\).