Table 1 Computation of averaged squared residuals errors of velocity, temperature, and concentration solution.

From: Applications of Cattaneo–Christov fluxes on modelling the boundary value problem of Prandtl fluid comprising variable properties

Approximate Order (n)

\(\delta_{n}^{f}\)

\(\delta_{n}^{g}\)

\(\delta_{n}^{\theta }\)

\(\delta_{n}^{\phi }\)

2

\(0.00004268\)

\(6.9894 \times 10^{ - 6}\)

\(0.00001112\)

\(0.0024046\)

4

\(1.09621 \times 10^{ - 6}\)

\(6.79463 \times 10^{ - 7}\)

\(1.23295 \times 10^{ - 6}\)

\(0.0003176\)

8

\(6.94405 \times 10^{ - 10}\)

\(1.68247 \times 10^{ - 8}\)

\(1.71512 \times 10^{ - 8}\)

\(0.00003448\)

12

\(1.45543 \times 10^{ - 11}\)

\(8.02786 \times 10^{ - 10}\)

\(6.00118 \times 10^{ - 10}\)

\(6.61207 \times 10^{ - 6}\)

16

\(1.73202 \times 10^{ - 13}\)

\(2.49836 \times 10^{ - 11}\)

\(1.87111 \times 10^{ - 11}\)

\(1.60319 \times 10^{ - 7}\)

20

\(9.10536 \times 10^{ - 15}\)

\(1.01889 \times 10^{ - 12}\)

\(1.3158 \times 10^{ - 13}\)

\(4.48226 \times 10^{ - 7}\)