Table 2 Number of features extracted by different feature extraction methods and the average AUC.
From: Prediction of blood supply in vestibular schwannomas using radiomics machine learning classifiers
Feature_Selection_Methods | AUC of classification methods | Number of selected Voxel | ||||
---|---|---|---|---|---|---|
RF | MLR | SVM | DT | Average | ||
t_test | 0.65 | 0.74 | 0.70 | 0.63 | 0.68 | 10 |
LASSO | 0.70 | 0.88 | 0.84 | 0.62 | 0.76 | 12 |
ANOVA | 0.60 | 0.61 | 0.50 | 0.61 | 0.58 | 14 |
t_test + LASSO | 0.73 | 0.80 | 0.77 | 0.65 | 0.74 | 12 |
Average | 0.67 | 0.76 | 0.70 | 0.63 | 0.69 |