Table 2 Thermo-physical properties of hybrid nanofluids.
From: Thermal growth in solar water pump using Prandtl–Eyring hybrid nanofluid: a solar energy application
Features | Hybrid nanofluid |
---|---|
Viscosity \(\left( \mu \right)\) | \(\mu_{hnf} = \mu_{f} (1 - \phi_{Cu} )^{ - 2.5} (1 - \phi_{Ms} )^{ - 2.5}\) |
Density \(\left( \rho \right)\) | \(\rho_{hnf} = \left[ {\left( {1 - \phi_{Ms} } \right)\left\{ {\left( {1 - \phi_{Cu} } \right)\rho_{f} + \phi_{Cu} \rho_{{p_{1} }} } \right\}} \right]\) + \(\phi_{Ms} \rho_{{p_{2} }}\) |
Heat capacity \(\left( {\rho C_{p} } \right)\) | \((\rho C_{p} )_{hnf} = [\left( {1 - \phi_{Ms} } \right)\{ \left( {1 - \phi_{Cu} } \right)(\rho C_{p} )_{f} + \phi_{Cu} (\rho C_{p} )_{{p_{1} }} \} ] + \phi_{Ms} (\rho C_{p} )_{{p_{2} }}\) |
Thermal conductivity \(\left( \kappa \right)\) | \(\frac{{\kappa_{hnf} }}{{\kappa_{gf} }} = \left[ {\frac{{\left( {\kappa_{{p_{2} }} + 2\kappa_{gf} } \right) - 2\phi_{Ms} \left( {\kappa_{gf} - \kappa_{{p_{2} }} } \right)}}{{\left( {\kappa_{{p_{2} }} + 2\kappa_{gf} } \right) + \phi_{Ms} \left( {\kappa_{gf} - \kappa_{{p_{2} }} } \right)}}} \right]\); \(\frac{{\kappa_{gf} }}{{\kappa_{f} }} = \left[ {\frac{{\left( {\kappa_{{p_{1} }} + 2\kappa_{f} } \right) - 2\phi_{Cu} \left( {\kappa_{f} - \kappa_{{p_{1} }} } \right)}}{{\left( {\kappa_{{p_{1} }} + 2\kappa_{f} } \right) + \phi_{Cu} \left( {\kappa_{f} - \kappa_{{p_{1} }} } \right)}}} \right]\) |