Table 5 The mAP, Rank-1 and Rank-5 on VeRi-776 dataset (in %).

From: A vehicle re-identification framework based on the improved multi-branch feature fusion network

Method

mAP

Rank-1

Rank-5

References

VRSDNet9

53.45

83.49

92.55

Multimed Tools Appl 2019

VGG + C + T33

58.78

86.41

92.91

ICME 2017

GS-TRE34

59.47

96.24

98.97

IEEE TMM 2018

AAVER13

61.18

88.97

94.70

ICCV 2019

VAMI + ST35

61.32

85.92

91.84

CVPR 2018

RAM10

61.50

88.60

94.00

ICME 2018

GRF + GGL38

61.7

89.4

95.0

CVPR 2018

QD-DLF36

61.83

88.50

94.46

IEEE TITS 2019

MSA14

62.89

92.07

96.19

Neural Computing and Applications 2020

SPAN w/ CPDM40

68.9

94.0

97.6

ECCV 2020

TCL + SL37

68.97

93.92

97.44

IEEE TIP 2019

AGNet-ASL + STR15

71.59

95.61

96.56

arXiv 2020

UMTS39

75.9

95.8

N/A

AAAI 2020

Ours

77.12

96.30

98.11

Proposed

  1. Bold indicate the best results for the corresponding metrics.
  2. N/A indicates that no data is provided.