Table 2 Evaluation results for different choices of hyper-parameters, measured in terms of Segmentation Quality (SQ) and Recognition Quality (RQ), with training and inference times.

From: High-throughput segmentation of unmyelinated axons by deep learning

 

SQ

RQ

Training (min.)

Inference (s)

Network depth

5

0.753

0.778

346

187

4

0.757

0.816

269

152

3

0.781

0.616

219

119

2

0.758

0.214 176

89

 

Loss

Weighted CE

0.757

0.816

269

152

Generalized dice

0.324

0.184

276

151

Focal

0.756

0.619

262

151

No border class

0.318

0.150

262

150

Tile size

256

0.769

0.647

79

250

384

0.767

0.756

169

216

512

0.757

0.816

269

152

524 without padding

0.766

0.729

227

4.5

768

0.769

0.733

332\(^{\dagger }\)

54\(^{\dagger }\)

Tile sampling

Area-based

0.757

0.816

269

152

Random

0.759

0.742

270

150

Fiber-centered

0.786

0.663

213

148

Proportional

0.783

0.675

213

150

  1. Inference times are measured on image 18. CE denotes cross-entropy.
  2. \(^{\dagger }\)Using a V100 GPU.