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Formulating a multi‑layered 
framework for automobile 
architecture
Sushil Chandra

Product architecture is defined as allocation of components to functions and their interfaces. But what 
makes this formulation insufficient for automobile architecture is their multi-layered allocation of 
components and the visual aspect of the architecture. This paper suggests, through an empirical study 
of two-wheeler models being manufactured by a prominent manufacturer, a multi-tiered framework 
along with a visual template for two-wheeler architecture which includes their visual schema as well. 
This paper investigates and demonstrates that this framework and template satisfy the requirements 
of product architecture by using examples from the domain of motorcycle design. Further, this paper 
investigates the utility of this framework for platforming strategy, innovation, adoption of new 
technology and standardization.

Automobile architecture is a concept which has currently gained in significance, especially considering architec-
tural transition due to the onslaught of artificial intelligence and electric mobility. What adds to its significance 
is the urgent need for a suitable formulation and framework fulfilling the specific needs of automobiles. But 
the question to be addressed before discussing this suitable formulation for automobile architecture is about 
the definition of architecture. Though, the word ‘architecture’ has its origin in ancient times, the exact contours 
of the term have not been clear for a very long time. Now since the usage of the word has widened its scope 
beyond civil structures to software, manufacturing, automobiles and even arts and literature, it has become 
even more important to clearly define it so that the contours are clearly identifiable and verifiable. Before ISO/
IEC/IEEE (2011)1 defined architecture of a system as “fundamental of a system in its environment embodied in 
its elements, relationships and in the principles of its design and evolution”, Ulrich (1995)2 provided a simpler 
sounding definition for product architecture. It is a scheme by which the function of a product is allocated to 
physical components. Crawley (2007)3 defines architecture similarly as “the embodiment of concept, and the 
allocation of physical/informational function to elements of form, and definition of interfaces among the ele-
ments and with the surrounding context”. Further simplifying it, he defines architecture as “the details of the 
assignment of function to form, and the definition of interfaces”. Dori (2002)4 defines the architecture as “the 
overall system’s structure-behaviour combination, which enables it to attain its functions while embodying the 
architect’s concept”. Rechtin and Maier (2002)5 define the architecture of a system as “the structure—in terms of 
components, connections, and constraints—of a product, process, or element”. So, there is near unanimity on 
the definition of architecture that it is the allocation of systems or components to functions and interfaces. Here 
we come across another term ‘system’ that needs a clear and objective definition. Crawley (2007) defines it as “a 
set of interrelated elements which perform a function, whose functionality is greater than the sum of the parts”. 
Dori (2007) defines it as “an object that carries out or supports a significant function”. Rechtin and Maier (2002) 
define it as “a collection of different things, which together produce results unachievable by the elements alone”. 
Going by these definitions, any product (or, in our case automobile) itself is a system which is a set of systems 
performing their respective functions.

Thus, we get a clear and objective definition of both ‘architecture’ and ‘system’ but the questions that remain 
unanswered are:

1.	 What are the unique aspects that characterize automobile architecture?
2.	 How do we define a ‘layer’ or ‘level’ in context of automobile architecture?
3.	 How do we define automobile architecture with respect to the layers of architecture?

Looking for the answer to the first question regarding the uniqueness of automobile architecture, Ristic 
(1988)6 provides a probable answer where he lists the following unique aspects of automobile architecture:
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(a)	 Balance of various functions by managing the contradictory demands of functions: Though this applies to 
various other architectures, this becomes critical for automobiles because the absence of this contradiction 
management will render the automobile dysfunctional.

(b)	 Managing the contradiction between symmetry and asymmetry.
(c)	 Anti-perspective three-dimensionality: The element of space in time is generated due to the unique factor of 

rectilinear motion, where the perspective view becomes irrelevant due the constantly changing viewpoint. 
Moreover, the law of hydrodynamics makes the three-dimensional form very critical so that it penetrates 
air and water with least resistance. Both, the factors make the form and the motion dialectically dependent 
on each other.

Besides these unique characteristics, one unique feature of automobile architecture is the intricate and interac-
tive interfacing of the user’s body with the product. This unique aspect is not applicable in any other architecture. 
(Yes, of course, there are other products where user’s body interfaces with the product, but these interfaces don’t 
form the central narrative of the architecture, the way they form in case of automobiles). Interspersing this most 
unique aspect of form-motion-user’s body interaction into the general definition and framework of architecture, 
this interaction becomes an essential function to which systems and components must be assigned, after this 
interaction is translated into more concrete and identifiable elements.

With a simple characterization for vehicle architecture thus available, we must consider whether it fulfils the 
need. Definitions and frameworks are useful only if we can put the definitions to practical use. And, for this we 
need a framework which describes the architecture of an automobile objectively, crisply and in simple words. In 
fact, Ulrich (1995) has already put in place a comprehensive framework for product architecture. Let us have a 
brief look at this framework. Since he defines product architecture as allocation of physical components to func-
tions, the framework has been derived from this perspective. He defines product architecture as (1) the arrange-
ment of functional elements (2) the mapping of functional elements (the allocation of elements to functions) 
and (3) the specification of interfaces among physical components. This results in a typology where architecture 
is classified as integral and modular and interfaces between elements are typified as coupled and decoupled on 
one hand and slot, bus, and sectional on the other. The fundamental issue with this framework is that this is 
redundant in context of vehicle architectures. In general context of industrial or consumer products this pro-
vides a good foundation to describe and classify the architecture but in context of vehicle design, the design of 
all vehicles is modular in architecture and the interfaces in all designs are slot interface. Toepfer and Naumann 
(2016)7 have described vehicle architecture as something which “describes the physical layout of a vehicle and 
the way it realizes its function by a given set of basic architectures parameters and modules”. They, thus, suggest 
a method to develop a vehicle architecture in a CAD-PLM-database framework. But what makes the descrip-
tion of vehicle architecture difficult is its complex (hundreds of elements interconnected to each other through 
innumerable interfaces) and multi-layered structure. Cameron et al. (2016)8 have defined the levels of system 
architecture and provided methods to describe the architectures, but they are fraught with two issues—(a) The 
methods they have described (SysML and OPM) are not layer specific and (2) their definition of layers and their 
identification does not help in clearly separating the layers while describing them. Chuma (2006)9, in his study on 
system complexity and product organization, states that with rapidly increasing complexity, new organizational 
forms become inevitable So, with huge variation in architecture of vehicles and with ever-increasing complexity 
of automobile design, a new framework for architecture becomes inevitable, which can address this complexity, 
the visual aspect and the issue of layers or levels.

With these unique characteristics of automobile architecture and considering the quest for a framework 
incorporating them with concrete and identifiable elements, when we look for the layered frameworks for prod-
uct architecture, we get two formulations. The first is by Kinnunen (2006)10, who provides a three level (Level 
0 combining needs, concept, processes and objects, level 1 combining specializing intents, zooming processes, 
and decomposing objects and level 2 combining decomposing and zooming objects and processes) model using 
Object-Process Methodology (OPM). The second framework is provided by Cameron et al. (2016) which also 
uses the Object-Process Methodology but with the difference that here the number of levels is not limited, and 
the models are common for all levels.

Both these frameworks can be applied to automobiles, but the unique characteristics of automobile architec-
ture will remain unaddressed. The second issue is that these models are too complicated and mathematical to 
be comprehended in one glance. For example, for two-wheelers, the words ‘motorcycle’ and ‘scooter’ combine 
the visual schema, the engineering schema, and the man–machine interface to create motion in one single word 
which no mathematical formulation can achieve. So, this becomes the top-level of architecture where the seman-
tics, the engineering, and the form-function-emotion triad merge in simple sounding words. This can be either 
named super-architecture or simply product-architecture. The second level (macro-level or system-level) is one 
where the automobile is expressed as a super-system combining many systems assigned to separately identifi-
able functions through interfaces. The pre-requisite again is objectivity (where every architecture is uniquely 
expressed) and simplicity such that it can easily be translated into an algorithm. The third level is component/ 
sub-system level or micro-level where a component or sub-system is broken into individual unbreakable parts 
and the architecture is expressed as their assignment to individual micro-functions and interfaces.

Objective
The formulation by Ulrich provides a good foundation to describe architecture in general and it applies to archi-
tecture of automobiles as well. Still, what needs further investigation is the level or zooming in and zooming out 
view of architecture. What it means is that the allocation of functions to components and defining the interfaces 
in an automobile is a multi-layered exercise and architectural decisions are to be taken differently at different 
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layers. The architectural decisions, while choosing the broader aspects of design, are completely different from 
the ones at the microscopic level. The objective of this paper is to go beyond Ulrich’s formulation and

(a)	 Define the architecture of an automobile at different layers of design.
(b)	 Create objective formulations for the architectures at the various layers defined in the first step in a way 

that the description of architecture becomes unique.
(c)	 Create a formulation that considers the visual aspect of automobile design.

Justification
An obvious question that needs to be answered before starting this exercise is that whether this exercise is really 
needed and if the answer is in affirmative, what purposes will be served by this exercise. Let us start by asking, 
what exactly is the problem with the formulation provided by Cameron et al. (2016) where they have described 
two methods described as SysML and OPM. We will see that the processes that can be conducted with the pro-
posed formulation to achieve the objectives described in the following paragraphs cannot be achieved with these 
formulations. The following factors make it imperative that automobile architecture is defined and formulated 
in an objective and nuanced way which addresses various levels of automobile design (which SysML and OPM 
do not):

(a)	 Platform strategy: Ulrich (1998)11, has established a relationship between architecture and the extent of 
commonality. Now, this commonality itself can be at many levels (i.e., at the level of components, assem-
blies, or systems) and therefore, the architecture must be defined level-wise. Not only this, any change in 
extent of commonality affects the components allocated to functions and their interfaces. Inversely, any 
change in components allocated to functions and their interfaces affects the level of commonality (Ref 
Fig. 1).

(b)	 Facilitating a technology change: Three factor are constantly forcing automobile manufacturers to constantly 
upgrade the technology: (a) Approval standards for environment (b) Alternatives to fossil fuels and (c) 
Digitalization. This makes it essential for designers to constantly change (a) the various functions available 
in an automobile (b) Components allocated to these functions and (c) the interfaces between the changed 
components.

Now, problems arise because of the location of these changes in the hierarchy of components. Let us consider 
for example, the addition of catalytic converters to the silencer of a motorcycle.

This necessitates the addition of a new function (oxidation of carbon monoxide in exhaust gases), alloca-
tion of a new component (catalytic converter) and the change in the interface with the design of silencer. But 
these changes occur at the tertiary level of design without affecting the motorcycle architecture at the product 
level or system level. But if the manufacturer wants to make an electric vehicle, a completely new architecture 
is required, which does not only change the visual schema of a motorcycle but the overall list of functions with 
various additions (like battery management), completely new components at primary level (like motor, battery 
etc.) and new interfaces. This means not all technological evolutions change the architecture at same level. This 
makes it is essential to define and formulate automobile architecture in a multi-level way and taking the visual 
schema into account.
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(c)	 Innovation: Henderson and Clark (1990)12 have formulated an innovation quadrant (refer Fig. 2), which 
clearly differentiates between different types of innovation based on the combination of interfaces and 
technology.

What this formulation clearly highlights is that for any innovation to take place, it is essential to clearly iden-
tify the interfaces (or linkages) and core concepts. Now, any complex system, and specially automobiles, consist 
of these linkages and core concepts at various levels But, what is common in all cases is that it needs, at least in 
many cases, a change in architecture, as by definition even radical innovation needs a change in architecture. 
And, since it happens at many levels, a multi-level approach to define and formulate architecture is essential.

(d)	 Standardization: Standardization is the broadest level of commonization, which generally happens at the 
tertiary level of design. Commonization generally happens across models of a manufacturer, whereas 
standardization happens across manufacturers across the globe. It happens not only with components 
(bolts, batteries, tires etc.) but with design features as well (e.g., plugs and holes dimensions) and even 
material compositions. Now, a tiered description of architecture helps in identifying the components and 
interfaces where differentiation is not important enough to warrant a new design (battery) and where a 
global cooperation is essential (material compositions, plug and hole dimensions).

Methodology
The major source of the study was design data related to a genre of automobiles encompassing as many variations 
of design as possible. The basic approach was to try and create a formulation which covers all these variations 
of design. Since the area of expertise of the author is motorcycle and scooter design, the genre selected was two-
wheeler design. The steps we will follow are as follows:

(a)	 We will create a layer-wise definition of automobile architecture and a formulation which helps in objec-
tively describing architecture at different layers of design.

(b)	 We will validate our formulation to check whether it is valid across all possible designs at all levels.
(c)	 We will further validate to check whether it fulfils all our stated objectives as stated in our justification.

Literature review
Jiao et al. (2001)13 define the architecture of product family in terms of three elements-common base, differentia-
tion enabler and configuration mechanism. This is a unique formulation, and it indisputably helps in devising 
platform strategy. But our challenge is to define the architecture of a product in such a way that it addresses the 
multi-layered structure of an automobile. Moreover, Jiao’s model does not account for visual elements and their 
interfacing. Ristic (1988) provides a parallel with building architecture which includes visual architecture as well, 
but it does not provide adequate basis for domain modeling and therefore, an objective formulation. Chandra 
(2015)14 also provides a formulation which considers visual schema specifically, but specific to the context of 
motorcycles only and without considering the multi-tiered structure. Pelliccione et al. (2017)15 have devised an 
architectural framework for system architecture of cars but only for software development. The common point 
with all these formulations is that they do not offer a standpoint from where we can explore a formulation for 
multi-tiered structure of automobiles. This is where, the formulation by Ulrich (1995) proves to be the most 
suitable starting point because he defines product architecture as (1) the arrangement of functional elements 
(2) the mapping of functional elements and (3) the specification of interfaces among physical components. This 
definition applies to automobile architecture suitably except for the fact that visual architecture is not accounted 
for as an independent criterion, and it does not cater to multi-tiered structures.

Figure 2.   Innovation quadrant (reference: Henderson and Clark).
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Discussion
An automobile is a multi-layered structure. A cursory look at the bill of material of any automobile-from the 
simplest motorized bicycle to the most complicated limousine-will testify to this. But, broadly speaking we 
can specify three tiers. The very first look at an automobile gives a birds-eye view, and this look gives a lot of 
architectural information-both visual and technological. We propose to call the summation of this information 
as super architecture or product architecture. Drilling down to the next level, the most pertinent observation is 
that any automobile is a combination of various systems-each responsible for a broad function- and all systems 
interfacing with each other. The set of architectural information pertaining to this combination of systems can 
be called macro-architecture or system-level architecture. Drilling further down, each system consists of various 
components and each component again being a set of components. The series of layer beneath a layer continues 
up to the level of every individual component. The architecture of this complicated web can be called micro-
architecture or component-level architecture.

(a)	 Super-architecture (Product-level architecture):

Since architecture must be expressed in terms of functions, components allocated to these functions and 
their interfaces, we must consider the over-arching functions which dictate the design of an automobile. Here, 
for purpose of convenience the genre of two-wheelers has been considered (though we can apply the same 
logic and sequence to the world of four-wheeler as well). Now, if we take the bill of materials of any scooter or a 
motorcycle and write down their primary functions, these functions can be classified under three broad heads:

-Provide mobility to the vehicle.
-Provide access, seating and means of navigation to the user or users.
-Provide a visual and emotional connect to users and those who look at it.

Before we explore a framework for super architecture for an automobile, it is imperative to look for already 
available frameworks. One such framework is provided by Ziv-Av and Reich (2003)16 in form of subjective-
objective systems for generating optimal product concepts. They propose a matrix where the two axes of the 
matrix are the functions and systems as the diagram below (Fig. 3) shows:

We can see that this formulation, which is fundamentally meant for quantitative evaluation of concepts, does 
not suit our purpose for two reasons: (a) It does not differentiate between overarching functions and secondary 
functions and (b) It does not account for interfaces.

Now, we can easily realize that each of these functions has innumerable variety and combinations of designs 
which can be allocated to them. Our challenge is to put them in manageable number of categories. Let us consider 
each one of them. As we know, mobility of a vehicle is combination of many basic functions and the components 
allocated to them are shown in Table 1.

This is only an indicative list, as many auxiliary functions like fuel storage, air intake, exhaust noise reduction 
have been omitted. But what is important to note from the list is that the set of components can be classified in 
two broad groups-IC engines (E1) and electric engines (E2).

So far as the function of human access, seating and navigation is concerned, the most important consideration 
which affects the overall schema is whether the access for the rider is by stepping through the front or by stepping 

Figure 3.   Subjective objective system for generating optimal product concepts (reference: Ziv-Av and Reich).

Table 1.   Components allocated to functions for two-wheelers.

Function Components

Power source Petrol engine Diesel engine Electric battery

Conversion to rotary motion Crank shaft Crank shaft Motor

Transmission Gears, chain, belt Gears, chain, belt Gears, chain, belt

Engagement and disengagement Clutch Clutch Switch

Speed variation Gears, variometric drive Gears, variometric drive Electric and electronic devices

Traction Wheels Wheels Wheels
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over the seat. This also decides the resting place for the legs of the rider. In case of step-through vehicle, there is 
a choice available between the legs resting in front or in sides and in case of step-over vehicles, the legs must rest 
in sides. Another consequence of this classification is the location of fuel tanks. In case of step-through vehicles, 
the fuel tanks must be located below the seat and the step-over vehicle have their fuel tanks right in front. This 
classification gets illustrated Fig. 4.

Beyond this access to the rider and the rider’s posture, which define the fundamental classification of a two-
wheeler, there is another fundamental difference which splits the world of two-wheeler vertically-the naviga-
tion mechanism which gives the two-wheeler its name i.e., a motorcycle or a scooter. As the diagram shows the 
motorcycle has an engine rigidly fixed to the frame and the drive transmitted to the rear wheel fixed to a swinging 
arm normally through a chain and sprocket mechanism. On the other hand, a scooter has the rear wheel fixed 
directly to the engine, which itself is acting as a swinging arm with respect to the frame (Ref Fig. 5).

What we observe in the last two classifications is a common ground. One can see with quite a good clarity, 
with the data available with us (and our commonsense logic also matches with it) that the third category in the 
access and posture classification is exclusive for scooters. Similarly, the first and second are exclusive for motor-
cycles. So, these two classifications can be easily merged to create three categories—(a) Step-over motorcycles 
(b) Step-through motorcycles and (c) scooters. By choosing one of the three we distinctly define the access, the 
posture, and the navigation mechanism.

Providing a visual and emotional connect to users and onlookers is a complex process but finally it depends 
on the visual schema. At broader level, this schema, based on the data available can be classified in categories 
shown in the following diagram (Ref Fig. 6):

Though one can be sure that this is not an exhaustive list and styling being a creative area, new visual schema 
is bound to crop up, this classification suffices for our purpose, which is not to provide an exhaustive list. The 
important point here is that by choosing these three categories—E (E1 or E2), X (X1, X2 or X3) and Y (Y1, Y2, 
––– or Y5), we completely define the broader contours of the architecture. For example, by specifying a two-
wheeler as a full fairing step-over, petrol-engine motorcycle, we completely define the super-architecture.

Now, we test this definition by verifying whether it satisfies Ulrich’s (1995) definition of architecture. We can 
verify by testing both the versions. The first version is easy to verify i.e., whether this definition allocates compo-
nent to functions and the answer is yes. The second version of the definition (i.e., whether this definition provides 
the three details—function, the construction of elements and the interfaces) is tricky. So far as the functions and 
the construction of elements is concerned, they are clearly available. For interfaces, we must look deeper. All 
the three classifications i.e., motorcycle vs scooter, access (X1, X2 etc.) and visual schema (Y1, Y2 etc.) define the 

Figure 4.   Broad two-wheeler classification based on access.

Figure 5.   The difference between a motorcycle and a scooter: a schematic diagram.
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interfaces. The classification of motorcycle vs scooter defines the interface between engine, frame, and wheels. The 
step—through versus step-over classification defines the interface between seat, fuel tank and step-rests. Finally, 
the visual schema is nothing but the interface between the visual elements. So, our definition passes the scrutiny.

(b)	 System Level Architecture

What does not emerge from the super-architectural details is the system-level information. For this we drill 
down a level deeper i.e., macro-architecture or system-level architecture.

The system-level architecture for automobiles can be described through a diagram, which I propose to be 
called house of architecture as it looks very similar in appearance to the house of quality. This diagram divides 
the major functions into system-level functions like power generation, transmission, shock absorption etc. and 
then allocates system-level construction units like power-source, transmission, front suspension, rear suspension, 
front-brake, rear brake, front wheel, rear wheel and front frame, mainframe, rear body, and side body. Then it 
qualifies the construction classification. It can be easily noted that many functions like fuel supply and seating 
have been omitted here. This has been done to (a) to reduce the architecture to the bare bones to describe the 
engineering of a motorcycle and (b) to simplify the definition to avoid making it too wieldy. The top portion of 
this house of architecture describes the interfaces by way of the type of interfaces (coupled or decoupled), the 
parts (if any) constructing these interfaces and the number of parts constituting these interfaces. Not only this, in 
case there are no interface parts, the relationship between the systems interfacing is also mentioned. This house 
is completed by mentioning the main parts (excluding fasteners, brackets, wires etc.) against each construction 
unit. Finally, the complete system-level architecture can be described as shown in Table 2.

Two things can be easily noted here. Nowhere does this architecture describe the quantitative specification. 
This is important because quantitative specification changes like capacity from 125 to 150 cc or 4 gear transmis-
sion to 5 gear transmission does not change the architectural description. Let us argue that there may be cases 
where quantitative specification changes change the fundamental relationship between the systems. But then, 
in that case the interface description will change and so we will have a different architecture in any case. The 
second point is the extension of the same argument that any change in this description fundamentally changes 
not only the construction classification but in most cases the interfaces as well. For example, if you change the 
description of power source from 4 stroke overhead cam to V-twin push-rod cam, most probably the interface 
with frame will change from twin rigid mounting to damped mounting.

Figure 6.   Classification of two-wheelers based on visual schema.
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Table 2.   House of architecture for a motorcycle.
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Now, let us examine, whether this description satisfies the definition of architecture. The first definition of 
allocation of components to functions is easily satisfied. The second definition of providing function, construc-
tion and interfaces is also easily satisfied. We can put another test to this description—is it possible that two 
designs having same description may have different architecture. Going by the framework provided here, it is 
possible that two motorcycles having the same description have completely different looks and styles. But as 
we have discussed earlier, this framework is for fundamental engineering considerations. If we want to include 
bodywork and styling as functions, we can easily expand the description framework.

(c)	 Micro Architecture

The third and the bottom-most layer deals with the component level construction. Frankly, description 
of the whole micro-architecture of an automobile will be too huge to be accommodated in one description. 
So, the micro architecture must be described with reference to a limited sub-system (for example, fuel cap or 
catalytic converters). Having considered this limitation, the framework fundamentally remains the same as 
that for system-level architecture but with one small difference. This difference is caused by complex mapping 
of functions to components. While considering system-level architecture, barring some exceptions, it is one to 
one mapping of functions as each system is supposed to deliver a specific function. But, in case of micro level 
design such clear segregation is difficult and unnecessary. Keeping this in view, we must provide for complex 
allocation of components to functions.

Let us take an example from real life. Motorcycle fuel tanks have fuel caps fitted into them. In earlier simpler 
times they had a simple function to enable fuel filling, locking the tank and allowing the gases to escape. Now 
with regulations to limit the evaporative emissions, these escaping gases must be routed to the engine. So, we 
see a metallic tube connecting the cap to the engine (Ref Fig. 7).

So, we have three functions and three components (Ref Fig. 8) here. The three functions, the system is sup-
posed to deliver are (1) to direct all the escaping petrol vapor to canister (which, in turn will redirect it to engine 
to avoid the vapor escaping to atmosphere) (2) to prevent leakage of vapor and (3) to ensure easy and effective 
locking of cap. The three components as shown in the diagram are (1) fuel cap (2) rubber seal breather and (3) 
metal fuel filler.

So, here we have a metal fuel filler welded on top of the tank, in which a cap is inserted and there is a rubber 
seal breather between these two parts. To understand the working, we look at the route of passage for the vapor 
as shown in Fig. 9.

The vapor enters the cap and exits the cap to enter passage in the rubber seal, which is made leak-proof due 
to the cap pressing against it. The passage has a collar, which is part of the tube carrying the vapor to the engine. 
(In fact, the vapor is stored in a canister and sucked by the engine when it operates. Now using our architectural 
framework, the architecture can be described as shown in Table 3.

To engine

Fuel drain

Figure 7.   Construction of motorcycle fuel cap.

Fuel Cap

Metal Fuel Filler

Rubber Seal Breather

Figure 8.   The components of a fuel cap.
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TANK VAPOUR 
VENTING 
THROUGH 
PRIMARY VALVE 
IN FUEL CAP

TANK VAPOUR OUT TO 
CANISTER VIA  FUEL CAP 
, RUBBER SEAL BREATHER 
& BREATHER PIPE

BREATHER PIPE

FUEL CAP

RUBBER SEAL
BREATHER

IN

OUT

Figure 9.   Working of a fuel cap.

Table 3.   House of architecture for the fuel cap.

Cap Metal Fuel Filler Seal Breather

Push type with in-
bilt HC collector

Seal joint with cap 
with vent and 
canister 
connec�ng tube Screwed seal

Supplying vapour to canister O O
Stopping Leakage O O O
Easy and effec�ve locking O O
No of parts 1 3 2

Cap Fuel Filler Seal
Vent tube Screws
Canister tube

(C) [0]
Seal pressing 
against cap with 
hole aligned to 
canister tube

(C) [0]
Cam locking 
without hinge

(C) [0]
Screwed with 
hole aligned with 
the canister tube

X XX
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Again, examining this framework against the criterions, we find it satisfying them. Now examining the three 
layers of frameworks, we observe (Ref Table 4) that all of them have some unique characteristics and that is one 
of the important reasons why it is essential to define them separately.

Verification of benefits
The next level of scrutiny for this framework is to examine whether this framework will be suitable for all designs 
and situations. Let us consider a scenario where either the technology is completely changed (for example electric 
mobility or autonomous vehicles) or the visual schema is completely unheard of, or the engine frame interface 
is such that it forms a new category altogether or we can have a situation where all the three possibilities exist 
together. In all situations the super architecture framework is still valid, and the new architecture can still be 
described by creating categories for new technology, new visual schema, or new engine-frame interface. So far 
as system-level architecture is concerned, the framework is so open that any new technology or schema can be 
accommodated. In system level architecture, old functions can be deleted, and new ones can be created without 
a hindrance and micro-architecture is, in any case so open that that any mechanism can be explained through 
it. We will explain all these hypotheses with examples later, while discussing innovation.

The next level of validation for this formulation is to check whether this new formulation is able to meet all 
our stated objectives. To recap, these objectives are—(a) platforming strategy (b) facilitating new technology (c) 
innovation (d) standardization.

Platforming.  Ulrich has described the steps for deciding the platforming strategy as-

1.	 Product plan
2.	 Differentiation plan
3.	 Commonality plan
4.	 Relationship between differentiation and commonality chunks
5.	 Reconciling the contradictions.

What we are concerned is about the way the architectural framework can help in following these steps. Here 
we will take a test case from a motorcycle manufacturing and demonstrate how this framework helps in following 
the steps for platforming strategy. This company at that time was manufacturing three models of motorcycles 
with super-architecture as follows (Ref Table 5).

Out of these three, we have already decsribed the system level architecture for model A. The remaining two 
have single-cylinder 100 cc OHC engines and backbone frame for model B and monocoque frame for model C. 
With these three models in the portfolio, the company planned to launch three new models with the following 
product plan and differentiation plan (ref Fig. 10).

The major challenge after the differentiation plan is to prepare the commonality plan. This needs complete 
information about the current and new design options. This is where the architectural framework helps as it 
provides a birds-eye view of the design of new products. So, based on the product plan, we decide the super-
architecture as shown in Table 6.

With this super-architecture in place, the system level architecture creation depends on the following 
questions:

(a)	 Which of the current products can provide the base architecture for the proposed products or can more 
than one current product do the same?

(b)	 Which of the systems are affected by differentiations?
(c)	 Whether the affected systems need a change in architecture or only a quantitative change will suffice?
(d)	 Whether new functions necessitating new systems need to be added?

Table 4.   Unique characteristics of multi-tiered architecture.

Level Unique characteristic

Susper architecture Components and interfaces intermixing with each other

System-level architecture One to one allocation of components to functions

Micro architecture Complex allocation of components to functions

Table 5.   Super-architectures of the three models.

Model Super-architecture

A 3 Box step-over motorcycle

B Naked step-over motorcycle

C 3 Box step-through motorcycle
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Figure 10.   Product plan and differentiation plan.

Table 6.   Super-Architecture of New Models.

E X Y

Stylish commuter step over motorcycle E1 X1 Y3

High performance fuel efficient step over motorcycle (emphasis FE) E1 X1 Y4

High performance fuel efficient and stylish step over motorcycle (emphasis HP) E1 X1 Y3
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(e)	 Whether the affected system has a coupled interface with an unaffected system? In that case, whether a 
change in interface design will be sufficient or the unaffected system needs to change its design or archi-
tecture?

Based on these considerations, the base architecture for the entry level unified step-over motorcycle is chosen 
to be that of model A. Now, answering the five questions, the differential house of architecture with respect to 
model is drawn, where only the quantity of new parts is shown. Whereever in the interface section the quantity 
of new parts is shown as zero, it means that the the type and the interface parts remain same as the base prod-
uct. Another small assumption is that the addition of small brackets in big parts is ignored. This is because the 
basic rule of automobile platforms is that the same chassis or frames are used in various model by changing the 
brackets and this is how chassis platforms are generated. So, the differential house of architecture for the stylish 
entry level bike is shown in Table 7.

We can very clearly notice here that except for five systems, all other systems are common to the base. Once 
this house of architecture is devised for a new model, drawing commonality plan and differentiation and com-
monality chunk relationship becomes very easy. Similarly, the differential houses of architecture for the remaining 
two new models (high performance and the stylish high-performance fuel-efficient bikes) are shown in Tables 8 
and 9 respectively.

To conclude, all three new proposed products can have the same basic frame as that of model A. One of these 
three products (the stylish entry level) can have the same engine as well, with only the cushions, lightings and 
body styling changed to create a new product. The remaining two will have the same basic engine with higher 
capacity (with some changes in valve timings and transmissions to generate the differentiation between high 
performance and fuel efficiency). After this analysis, we are in a position where the commonality plan (where the 
exact number of new and legacy parts and their implications on cost and investment is required) can be easily 

Table 7.   System-level Architecture for Stylish Commuter Bike.

Base Model
A

Func�on Power Source Transmission Front wheel Rear wheel Fr Suspension Rear Suspension Fr Brake Rear Brake Front Frame Frame Front Face Rear Body Side Body
1 Cyl OHC speed gear transmissio Spoke and rim Spoke and rim Telescopic Twin swingarm Mechanical Drum Mechanical Drum Single pipe handle bar Down Tube oidal mul�-reflector heaush mul�reflector tail lig Unified

New Construc�on N N N N N N N N N N Y Y Y
Common Y Y v v N N v v v v N N N
Power source O
Transmission O
Main Frame O
Shock absorp�on O O
Braking O O
Trac�on O
Naviga�on O

Aesthe�cs and styling O O O
No of parts change 0 0 0 0 1 1 0 0 0 0 8 7 7

Front Fork Rear Cushion Visor Tail Light Fuel Tank
Panel visor Winker L Cap Fuel Tank
Head Light Winker R Side Cover L
Winker L Rear Fender Side Cover R
Winker R Number Plate Side cowl  L

Front Fender Bracket Number Plate Side cowl  R
Number Plate Handle frip Rear Cowl

Bracket Number Plate Seat

0

0

0

Chain and 
sprockets(d)    
[7]

0 0

0

Bracket Fr 
Fender ( c )
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drawn and the planner can immediately find out where does the integral architecture need to be changed into 
modular to generate more commonality.

To be precise, this architecture framework has helped in devising the platforming strategy in three ways:

(a)	 It has provided the view at a glance so that differentiations and commonalities can be applied with an all-
round view.

(b)	 It has provided the details of interfaces so that the impact of change in one system on other systems can be 
visualized.

(c)	 It indicates the scope for improving commonality by converting coupled interfaces into decoupled ones.

Innovation.  Referring to the innovation quadrant by Henderson and Clark and the framework, we can link 
the innovation categories in automobiles to the levels of architecture as follows.

Incremental innovation, in most cases is out of the scope of architectural planning as neither the functional 
mapping nor the interfaces change at any level. Architectural changes happen mostly at super architectural level 

Table 8.   System-level Architecture for High-performance Bike.

Base Model
A

Func�on Power Source Transmission Front wheel Rear wheel Fr Suspension Rear Suspension Fr Brake Rear Brake Front Frame Frame Front Face Rear Body Side Body
1 Cyl OHC speed gear transmissio Spoke and rim Spoke and rim Telescopic Twin swingarm Mechanical Drum Mechanical Drum Single pipe handle bar Down Tube oidal mul�-reflector heaush mul�reflector tail lig  3Box

New Construc�on N N N N N N N N N N Y Y N
Common N N N N N N N N N Y N N N
Power source O
Transmission O
Main Frame O
Shock absorp�on O O
Braking O O
Trac�on O
Naviga�on O

Aesthe�cs and styling O O O
No of parts 20 27 6 6 1 1 3 3 3 0 6 5 7

cylinder crank case L Tire Tire Front Fork Rear Cushion Brake Shoe Brake Shoe Pipe handle bar Visor Tail Light Fuel Tank
cyl head crank case R Tube Tube Panel Brake shoe Panel Brake shoe Top bridge Panel visor Winker L Cap Fuel Tank
poiston crank case L Cover Rim Rim Cam Brake shoe Cam Brake shoe Bo�om Bridge Head Light Winker R Side Cover L

piston ring 1 crank case L Cover Spoke 1 Spoke 1 Winker L Rear Fender Side Cover R
piston ring 2 Clutch Spoke 2 Spoke 2 Winker R Side cowl  L
piston ring 3 Clutch plate Drive Hub Hub Front Fender Side cowl  R

con rod Clutch plate driven Handle frip Rear Cowl
Gudgeon pin Cam clutch Seat
crank sha� Sha� cam clutch
Cam sha� Main sha�

Rocker arm Counter Sha�
Valve inlet G1

Valve exhaust G2
Seat inlet G3

Seat exhaust G4
Sprocket cam chain Gn1

Cam chain Gn2
Arm cam chain tensioner Gn3
Arm cam chain tensioner Gn4

Cam chain Tensioner Cam gear shi�
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Pin gear shi�
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Starter gear
Starter sha�

Spring starter sha�
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because it is at this level where a new product is created without changing the technologies and simply by chang-
ing the linkages. Radical innovation happens mostly at macro architectural level because both the core concepts 
and the linkages change at this level. Modular innovation happens at mostly at micro architectural levels where 
the interfaces remain intact, but the core concepts change. I will discuss an example of radical innovation in next 
section about adoption of new technology and here I will be discussing how does this framework help in a case 
of modular innovation at micro-architectural level.

This framework helps in the innovation process in three ways:

(a)	 It helps in studying the compatibility between various options.
(b)	 It helps in devising interfaces between various systems with various options.
(c)	 It helps in evaluating the sets of various options.

We will go through an example to illustrate this. We have already discussed the micro-architecture of a 
motorcycle fuel cap. Now we will illustrate how this architectural framework was used for innovation to solve 
a grave performance issue, the leakage of evaporative emissions. With the onset of new environmental norms, 
Indian emission regulations put very strict limit on evaporative norms and the design illustrated in the example 
showed some leakages of evaporative emissions to the atmosphere. There was a thought to change the architecture 
to eliminate the possibility of leakage altogether. The reason, why this is an apt example to show the usefulness 
of this framework is that the steps used in the process can very effectively use the house of architecture. The 
process uses the followings steps.

(a)	 Exploring the design options: Here, the various possible options for each system are explored through 
brainstorming. In this case the fuel cap has three systems and the options for each of them have been shown 
in Table 10.

Table 9.   System-level architecture for stylish high-performance bike.

Base Model
 High performave  fuel effcient bike

Func�on Power Source Transmission Front wheel Rear wheel Fr Suspension Rear Suspension Fr Brake Rear Brake Front Frame Frame Front Face Rear Body Side Body
1 Cyl OHC speed gear transmissio Spoke and rim Spoke and rim Telescopic Twin swingarm Mechanical Drum Mechanical Drum Single pipe handle bar Down Tube ngular Head Light with fon­flush separate winke  3Box

New Construc�on N N N N N N N N N N N N N
Common Y N N N N N Y Y Y Y N N N
Power source O
Transmission O
Main Frame O
Shock absorp�on O O
Braking O O
Trac�on O
Naviga�on O

Aesthe�cs and styling O O O
No of parts 20 27 1 1 1 1 0 0 0 0 6 5 7
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(b)	 Interface options: Here the various options for interfaces between systems are explored and are plotted in 
the house of architecture. The various options for interfaces are shown in Table 11.

Now, the interfaces are plotted in the house of architecture along with the coupling characteristics as shown 
in Table 12.

(c)	 Feasibility: The house of architecture is expanded to sort the feasible combinations as shown in Table 13.
(d)	 Evaluation: Having zeroed down to all feasible combinations, we evaluate these combinations to see the 

degree to which all these architectural options fulfil the functions. The degree of fulfillment of a function 
depends on two criterions

(a)	 The possibility of failure
(b)	 The level of performance

Table 10.   Design options for components of fuel-cap.

System A: Cap

Option Detail Illustration

a1
Push type cap where the evaporative gases enter and exit inside the tank itself with sealing 
to avoid leakage to atmosphere.  

a2
Push type cap where the evaporative gases do not enter the cap at all with sealing to avoid 
leakage to atmosphere.  

a3 Rotating type simple cap without lock (lock pto be provided separately).
 

System B: Metal fuel filler

Option Detail Illustration

b1 With cam recess for cap lock and tube connecting to cap and a tube to connector Cannister tubeVent tube
Cam recess

 

b2 Internal HC collector HC Collector

 

b3 Thread matching with cap and internal HC collector Threads
 

System C: Seal breather

Option Detail Illustration

a1 Rubbr seal with screw holes and a connecting hole for canister tube
Hole for 
cannister tube

Holes for screws 

Table 11.   Design options for interfaces.

Interface AB: Cap and metal fuel filler

Option Detail

ab1 Cap hinged to metal fuel filler hinged Joint

ab2 Cap not hinged to metal fuel filler hinged Joint

ab3 Thread joint

Interface BC: Metal fuel filler and seal breather

Option Detail

bc1 Seal screwed to metal fuel filler with hole aligned to canister tube

bc2 Seal pressing against metal fuel filler with hole aligned to canister tube

bc3 No seal

Interface AC: Seal and cap

Option Detail

ac1 Seal fitted with cap with hole aligned to MFF and canister tube

ac2 Seal pressing against cap with hole aligned to MFF and canister tube
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Both these criterions can be evaluated on a scale of 0 to 3 each. For the criterion of failure possibility, the 
rating of 0 means absolute certainty of failure, 1 means a possibility of failure if any of the parameters is at 
extremity of allowed variation or tolerance, 2 means possibility of failure when parameters are out of tolerance 
and 3 means absolutely no chances of failure. Similarly, for the criterion of performance level, 0 rating means 
inability to perform, 1 means the bare minimum level of performance, 2 means varying levels of performance 
and 3 means the performance at peak levels under all conditions. So, the overall scale for f(x) is 0 to 9 resulting 
from multiplication of the two ratings. We can see the expanded house of architecture in Table 14.

Here, it is clear from the diagram that the last two combinations meet the functions in best possible manner. 
But the last combination of cap with threaded locking is applicable where the cap is not an aesthetic element. 

Table 12.   Plotting the interfaces in the house of architecture.
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Table 13.   Feasibility study.
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Table 14.   Evaluation.

a1 a2 a3 b1 b2 b3 c1 ab bc ac f(x1) f(x2) f(x3)

bc1 ac2 6 4 1

bc2 ac1 6 4 1

bc1 ac2 9 4 4

bc2 ac1 9 4 4

ab1 9 9 1

ab2 9 9 6

o o ab3 9 9 6
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In situations where cap has aesthetic value, the combination of a2, b2 without hinge gives the best possible 
functioning and stops the possibility of leakage altogether (ref Fig. 11).

Adoption of new technology.  Adopting new technologies for current products is a challenge and the 
challenge lies in making the new technology work with bare minimum changes (i.e., maintaining maximum 
commonality) and still maximize the benefits of new technology. Where this new architectural framework helps 
in achieving this is to formulate the new allocation of systems to functions and scan the network of interfaces to 
create and conceive new interfaces.

Here we will study the adoption of electric mobility for motorcycles. Here the benefits that are sought to be 
derived are cost effectiveness, non-polluting mobility with less moving parts, less frictional losses, and less noise. 
Here, we will start with the architecture of motorcycle we have already discussed earlier. The steps to be followed 
to arrive at the new architecture are as follows:

1.	 Identify the base product and its architecture: Having already picked the base product, we start with the 
function-system allocation matrix (ref Table 15).

2.	 Remove the functions which are not necessary in view of the new technology and add new functions which 
will be needed. Accordingly, the systems allocated to the removed functions will also be removed. Conse-
quently, allot new systems to newly added functions. For convenience, we keep the functions and systems 
not affected by adoption of new technology, out of discussion and hence we remove them as well. This results 
in a new matrix (ref Table 16).

3.	 For each function, explore all technological options. It is important to understand that it is the function 
which must be fulfilled and other considerations like construction, technology, location, sequence are all 
subject to change if the requirement demands it. For example, in the following table, the function of trans-
mission system is to deliver required torque and acceleration at all speeds, and this can be fulfilled through 
an electrical device called controller. Similarly, with the new technology we acquire the freedom of locating 
the motor anywhere and therefore, in-wheel hub-motors becomes a viable option. This analysis results in 
the Table 17.

Fuel Cap

Metal Fuel Filler

HC 
Collector

Figure 11.   Final solution for fuel cap.

Table 15.   Function-system allocation for base model.

Function Engine Transmission
Front 
wheel

Rear 
wheel

Fr 
Suspension

Rear 
Suspension Fr Brake

Rear 
Brake

Front 
Frame Frame

Front 
Face

Rear 
Body

Side 
Body

1 Cyl 
OHC

4 speed gear 
transmission

Spoke and 
rim

Spoke and 
rim Telescopic Twin 

swingarm
Mechani-
cal Drum

Mechani-
cal Drum

Single 
pipe han-
dle bar

Down 
Tube

Rectangu-
lar Head 
Light with 
fairing

Non-flush 
separate 
winker

3Box

Power 
Genera-
tion

O

Transmis-
sion O

Main 
Frame O

Shock 
absorp-
tion

O O

Braking O O

Traction O

Naviga-
tion O

Styling O O O
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4.	 Map the interfaces for all possible technological options. It is quite possible that there are two or more 
interfaces possible between systems. Map all of them with the conditions explicitly stated. For example, the 
interface between motor and rear wheel depends on whether a mechanical transmission is adopted or a 
controller. Moreover, there may be situations where there is no interfacing part but a relationship dictating 
whether the interface is coupled or decoupled. For example, the interface between brake and rear wheel is 
the relationship between drum and brake shoe diameters. After mapping the interfaces, we get the diagram 
as shown in Table 18.

5.	 List the possible combination of options with their interfaces. For convenience and avoidance of data-clutter, 
we remove the technological options and their interfaces which remain the same in all options and thus do 
not add value to the evaluation of options, which follows the listing (ref Table 19).

Table 16.   Function-system allocation for the new product.

Battery Motor Transmission Rear wheel Rear brake Frame

Power source O

Drive O

Torque Regulation O

Traction O

Braking O

Main frame O

Table 17.   System-wise design options for the new product.

Electric 2-wheeler design options

Option Option name Detail Illustration

A: Battery: Storage, supply and renewal of energy

a Battery
Liquid state Lithium Ion battery. Remaining options like fuel cell and solid state battery are not in a stage 
where they can be adopted for two wheelers. Moreover various options within liquid state Li-ion battery are 
same in architecture and do not affect the interfaces  

B: Drive: Conversion of of stored energy into rotational energy

b1 Rigidly fixed motor Brushless DC motor

 

b2 In-wheel hub motor Internal/external/axial rotation

 

C: Transmission: Regulating desired torque and speed relationship and coupling and decoupling with Output

c1 Rigid Geared transmission Gear pairs coupled with clutch

 

c2 In- wheel geared transmission Axial or parallel coupling with in-wheel motor

c3 Variometric transmission Centrifugal pullys with toothed belts and centrifugal clutch

 

c4 Controller Torque regulation through electrical signals and decoupling after braking

 

D: Rear wheel: Traction

d1 Rear wheel Cast or spoke

E: Rear brake

e1 Rear brake Disc or drum, hydraulic or mechanical

F: Frame: Holding all systems

f1 Frame Down tube, monocoque, diamond or any other conventional frame
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Table 18.   Mapping the interfaces for the new product.

Power Source Rear Wheel Rear Brake Frame

Ba�ery (a1)
Motor- Rigid 
(b1)

Motor-Hub 
(b2)

Mul� Gear 
(c1)

In-wheel 
Gear ( c2 ) 

Variometric 
Drive (c3)

Controller 
(c4) d1 e1 f1

Drive Transmission System

X X X X X X X X
X

X

BMS
( C)

BMS
( C)

X

X

BMS
( C)

X

X

Ba�ery box 
Rigid Moun�ng 

( d )

Clutch
( C)

Clutch
( C)

BMS
( C)

X for c1/c2/c3

Rigid Moun�ng  
( d )

Chain/belt for 
c4  ( d)

X

X

BMS
( C)

Axle and 
hub
( d)

Brake sensor 
switch for c4

( d)

X

X

X

Chain/belt 
(d)

Chain/belt 
(d)

X

X

X

Hub and shoe 
dia

( C)

X

X

X

Swingarm 
( d )

Stopper Rod
( d )

X

Brake sensor 
switch for c4

( d)

Brake sensor 
switch

( d)

Planetary
gear
( C) X

X

X

X

X
Clutch
( C)

X

X

Gear
Geometry

( C)

X

X for c1/c2/c3

X for c2

Table 19.   Listing the feasible combinations.

Options
Battery 
(a1)

Motor-
rigid 
(b1)

Motor-
hub 
(b2)

Multi 
gear 
(c1)

In-wheel 
gear (c2)

Variometric 
drive (c3)

Controller 
(c4) d1 e1 f1 AB BC AC AD BD CD AE BE CE DE AF BF

1 a1 b1 c1 d1 e1 f1 BMS Clutch X X X Chain/ 
belt X X X

Hub 
and 
shoe 
dia 
(0)

Bat-
tery 
box

Rigid 
Mtg(0)

2 a1 b1 c3 d1 e1 f1 BMS Clutch X X X Chain/ 
belt X X X

Hub 
and 
shoe 
dia 
(0)

Bat-
tery 
box

Rigid 
Mtg(0)

3 a1 b1 c4 d1 e1 f1 BMS X Chain/ 
belt X X

Brake 
sensor 
switch

Hub 
and 
shoe 
dia 
(0)

Bat-
tery 
box

Rigid 
Mtg(0)

4 a1 b2 C2 d1 e1 f1 BMS Clutch X X
Axle 
and 
hub (0)

Gear-
hub 
inter-
face 
(0)

X X X

Hub 
and 
shoe 
dia 
(0)

Bat-
tery 
box

X

5 a2 b3 c4 d1 e1 f1 BMS X
Axle 
and 
hub (0)

x x
Brake 
sensor 
switch

Hub 
and 
shoe 
dia 
(0)

Bat-
tery 
box

X
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6.	 Having listed all viable combinations with their interfaces, it becomes easy to evaluate on criterions critical 
for selection.

(a)	 Number of mechanical and electronic systems and interfaces: Since it is simple numbers, it is easy to 
compare as mechanical systems increase noise and friction and therefore a smaller number of mechanical 
systems means smoother, less vibrating, quieter and energy efficient systems.

(b)	 Minimization of friction, noise and wear and maximization of power density: Here the rating can be com-
parative as exact quantification is not possible at this stage.

So, this evaluation results in the following table (Ref Table 20).
With this table, it is easy to conclude that options 3 and 5 give us the best results. Though it looks that option 

5 (in-wheel hub with controller) is undisputedly the best, but it has got limitations of size and capacity. Moreover, 
hub-motors generate high stresses for wheel-spokes which can be mitigated only up to a certain motor output 
and therefore, beyond a certain limit, option 3 is the best bet, as with rigidly fixed motors, the limitations are 
removed to a great extent.

Standardization.  With this architectural framework it is easy to identify coupled interfaces. After hav-
ing identified them, it becomes possible in many cases to design the interfaces in such a way that they become 
decoupled interfaces. This is done by standardizing the interfaces.

In the illustration shown (ref Fig. 12), the interface between engine and frame in a motorcycle is fundamen-
tally a coupled interface as the x and y dimensions need to exactly match. To use the same engine on different 
frames or the same frame for different engines these dimensions need to be standardized. This requirement can 
be identified through the house of architecture where each interface needs to be characterized as coupled or 
decoupled.

Conclusions
Referring to Chuma’ s formulation that increasing complexity of system inevitably leads to new organizational 
forms, this paper provides an evidence to the formulation. Various levels of components in a system increase the 
complexity and this has led to a new framework to organize the functions, components, interfaces, and levels. 
Though, Chuma’s formulation opens a completely new avenue of research to define and quantify complexity of 
systems and relate it to organizational forms.

The work done by Ulrich clearly establishes a definition, which is very crisp, identifiable, and verifiable. 
Cameron et.al and Kinnunen have provided very vivid definitions for the layers of architecture. What this paper 
has tried to provide is a definition for various layers (from the birds-eye to the atomic level) and their respec-
tive frameworks in the same way as house of quality provides for design quality. Though, this exercise has been 
completely in the domain of motorcycle design, the framework is applicable to any domain of design because the 
fundamental relationship between, function, systems, elements, and interfaces remains the same in all domains 

Table 20.   Evaluation.

Option

Systems Interfaces Friction 
minimization

Noise 
minimisation

Power density 
maximization

Wear 
minimizationMechanical Electronic Mechanical Electronic

1 2 1 3 1 1 1 1 1

2 2 1 3 1 1 1 1 1

3 1 2 2 2 3 3 3 3

4 2 1 1 1 2 2 2 2

5 1 2 0 2 4 4 4 4

Figure 12.   Standardizing the interfaces for engine and frame.
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of design. Moreover, it has been seen that the formulations provided by Ulrich, Reich and Cameron do not suffice 
to conduct the processes that we have demonstrated.

The domain of innovation, as formulated by Henderson and Clark, when juxtaposed with the domain of 
architecture leads to a revelation about the relationship between the level of architecture and the type of innova-
tion. Though, this paper provides an overview of this juxtaposition, this needs a new research area altogether.

To summarize, this work has added the following to the area of product architecture:

(a)	 It has identified relevant layers for automobile architecture.
(b)	 It has formulated layer-wise definitions of architecture specific to the domain of automobiles. The top 

layer definition relates to the interfacing between visual, engineering, and ergonomic domains whereas 
the system-level architecture is defined as the function-system allocation and interfacing between the 
systems. The component level definition is function—component allocation and the interfacing between 
the components at the bottom-most level. These definitions are different from those provided by Cameron 
et al. and Kinnunen, which are not layer specific and hence these definitions can be helpful to the product 
strategists and those creating computer programs at the same time.

(c)	 It has formulated layer-wise frameworks to express the architecture uniquely, crisply and in simple words. 
Again, these frameworks are simple to create, simple to understand and helpful in strategizing because—(a) 
it provides the micro and macro view at the same time and (b) function-element allocation and interfacing 
are uniquely described in a comprehendible way.

(d)	 After answering the basic research question of finding a level-wise framework for the definition of archi-
tecture, this paper goes on to verify whether this framework satisfies the definition of architecture which 
has already been established by Ulrich and finds that the answer is in affirmative.

(e)	 The next question was about the usefulness of this whole exercise and this paper has demonstrated with 
examples how this framework can be used for platforming strategy, innovation, adoption of new technol-
ogy and standardization.

Finally, this work can be put to following applications:

(a)	 The product strategic plan for automobiles needs a simple but effective tool to express the architecture which 
uniquely encompasses the essential and unique aspects of automobile design. This work provides exactly 
that in form of top-level product architecture and house of architectures for system level, which provide a 
birds-eye view of the comparative architecture to the product-planners to enable them to take a decision. 
The models provided by Cameron et al. and Kinnunen are too complex to have a comparative birds-eye 
view.

(b)	 This work helps in creating a simple algorithm for capturing the architecture so that it can help in effective 
platform—planning, innovation, and standardization. The house of architecture is a tool that is effectively 
utilized for platform planning where commonization plan is derived using this tool. Similarly, the house of 
architecture can be very effectively used for innovation and new technology adoption the way it has been 
demonstrated in respective sections. Finally, for standardization, the house of architecture readily identifies 
the coupled interfaces.

So, this framework not only gives the designers a tool to objectively describe the architecture at various levels 
in automobile design but offers flexibility in all domains of design and creativity.
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