Table 1 Results based on three models with and without differential features.

From: Machine learning-aided risk prediction for metabolic syndrome based on 3 years study

Model

Threshold

AUC

Accuracy

Precision

Recall

F1-score

Specificity

F2-score

Without DNFs and DSFs

XGBoost

0.147

0.918 ± 0.003

0.833

0.40

0.85

0.55

0.83

0.69

Stacking

0.116

0.917 ± 0.003

0.812

0.37

0.88

0.52

0.80

0.69

Random Forest

0.156

0.908 ± 0.003

0.804

0.36

0.88

0.51

0.79

0.68

With DNFs and DSFs

XGBoost

0.144

0.930 ± 0.002

0.849

0.43

0.87

0.58

0.85

0.72

Stacking

0.125

0.928 ± 0.002

0.837

0.41

0.89

0.56

0.83

0.72

Random Forest

0.177

0.916 ± 0.002

0.825

0.39

0.87

0.54

0.82

0.70

  1. The result with the best performance in each metric using different classifiers are marked in bold characters.