Table 3 Class-specific accuracies (%) on Indian Pines dataset.

From: Early detection of plant virus infection using multispectral imaging and spatial–spectral machine learning

Class

3D-CNN-LR33

RNN-GRU-PReTanh34

Feature-ensemble ND-SVM25

CNN-MRF35

HSINet36

\(\hbox {U}_{\text {Hfe}}\) \(\hbox {SRVAE}_{11}\)37

2D-CNN

\(\hbox {SSFNet}_{\text{2D}}\)

1

100

70.6

99.9 ± 0.1

86.5

100

89.6

90.7 ± 7.5

95.3 ± 4.3

2

96.3 ± 1.1

70.3

66.4 ± 1.4

91.5

66.9

89.4

97.6 ± 1.3

98.4 ± 1.0

3

99.5 ± 0.7

81.5

82.8 ± 1.0

96.4

62.4

85.1

97.8 ± 1.6

98.7 ± 1.2

4

100

90.2

89.9 ± 1.2

96.2

100

82.0

97.8 ± 2.4

99.0 ± 1.8

5

99.9 ± 0.2

92.0

94.6 ± 0.6

99.5

83.2

92.6

96.4 ± 2.5

97.8 ± 2.4

6

99.8 ± 0.3

96.1

99.3 ± 0.1

99.8

98.0

96.7

98.6 ± 1.3

99.3 ± 0.8

7

100

84.8

99.9 ± 0.1

78.0

100

34.8

84.6 ± 17.6

93.0 ± 9.6

8

100

59.6

99.6 ± 0.1

98.8

99.7

98.6

99.9 ± 0.3

99.9 ± 0.1

9

100

86.2

99.9 ± 0.1

100

100

93.8

84.9 ± 17.5

93.9 ± 9.8

10

98.7 ± 1.0

99.4

92.2 ± 0.7

94.3

77.5

89.9

97.1 ± 1.9

98.4 ± 1.4

11

95.5 ± 1.2

85.0

77.7 ± 1.0

96.5

78.4

93.2

99.0 ± 0.6

99.4 ± 0.5

12

99.5 ± 0.4

77.6

83.2 ± 1.2

91.9

75.0

85.5

96.8 ± 2.0

97.6 ± 2.7

13

100

95.6

99.8 ± 0.1

98.9

99.5

99.0

98.7 ± 2.2

99.1 ± 1.6

14

99.6 ± 0.6

84.6

95.7 ± 0.2

98.4

96.5

96.7

99.7 ± 0.5

99.9 ± 0.2

15

99.5 ± 1.3

90.9

86.2 ± 1.1

91.5

69.1

80.1

98.9 ± 1.4

99.2 ± 1.3

16

99.3 ± 1.08

100

99.9 ± 1.0

97.9

100

92.9

87.8 ± 7.5

95.3 ± 5.9

OA

97.6 ± 0.4

88.6

96.1

83.0 ± 0.2

91.4

98.1 ± 0.4

98.9 ± 0.4

AA

99.2 ± 0.2

85.3

91.7 ± 0.1

94.8

87.9 ± 0.2

87.5

95.4 ± 3.1

97.8 ± 2.8

\(\kappa \times 100\)

97.0 ± 0.5

73.7

95.8

81.9 ± 0.2

90.2