Table 1 Derived equations for distinguishing the natural-VAC-free zone from the pseudo-VAC-free zone in an SMV display.
From: Fatigue-free visual perception of high-density super-multiview augmented reality images
Term | Equation | Term definition | Equation number |
---|---|---|---|
\(c_{p} \left( {z_{e} ,N} \right)\) | \(c_{p} = N\frac{e}{{z_{e} }}\frac{{w_{v} \left| {l - z_{e} } \right| + pz_{e} }}{l}\) | Maximum blur width of a voxel consisting of \(N\) views for viewer’s focus distance \(z_{e}\) | (4) |
\(c_{o} \left( {d_{obj} ,z_{e} } \right)\) | \(c_{o} = \frac{e}{{z_{e} }}\frac{{W\left| {d_{obj} - z_{e} } \right|}}{{d_{obj} }}\) | Natural true blur width of a voxel with object distance \(d_{obj}\) for \(z_{e}\) | (5) |
\(d_{\max } \left( {z_{e} ,N} \right)\) | \(d_{\max } = \frac{{Wlz_{e} }}{{Wl - N\left( {w_{v} \left| {l - z_{e} } \right| + pz_{e} } \right)}}\) | Maximum object distance \(d_{obj}\) of a voxel consisting of \(N\) views in the natural-VAC-free zone for \(z_{e}\) | (6) |
\(d_{\min } \left( {z_{e} ,N} \right)\) | \(d_{\min } = \frac{{Wlz_{e} }}{{Wl + N\left( {w_{v} \left| {l - z_{e} } \right| + pz_{e} } \right)}}\) | Minimum object distance \(d_{obj}\) of a voxel consisting of \(N\) views in the natural-VAC-free zone for \(z_{e}\) | (7) |